[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Uniform approximation on the sphere by least squares polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper concerns the uniform polynomial approximation of a function f, continuous on the unit Euclidean sphere of ℝ3 and known only at a finite number of points that are somehow uniformly distributed on the sphere. First, we focus on least squares polynomial approximation and prove that the related Lebesgue constants w.r.t. the uniform norm grow at the optimal rate. Then, we consider delayed arithmetic means of least squares polynomials whose degrees vary from nm up to n + m, being m = θn for any fixed parameter 0 < θ < 1. As n tends to infinity, we prove that these polynomials uniformly converge to f at the near-best polynomial approximation rate. Moreover, for fixed n, by using the same data points, we can further improve the approximation by suitably modulating the action ray m determined by the parameter θ. Some numerical experiments are given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximations on the sphere using spherical designs. SIAM J. Numer Anal. 50(3), 1513–1534 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, R.: Distribution of points on a sphere with application to star catalogs. J. Guid. Cont. Dyn. 23(1), 130–137 (2000)

    Article  Google Scholar 

  3. Brown, G., Dai, F.: Approximation of smooth functions on compact two-point homogeneous spaces. J. Funct. Anal. 220, 401–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, F.: On generalized hyperinterpolation on the sphere. Proceedings of the American Mathematical Society 134(10), 2931–2941 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls, volume XVIII of Springer Monographs in Mathematics Springer (2013)

  6. Daugavet, I.K.: Some applications of the Marcinkiewicz-Berman identity. Vestnik Leningrad Univ Math. 1, 321–327 (1974)

    Google Scholar 

  7. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Mathematische Nachrichten 5, 650–668 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gräf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27, 124–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hardin, D.P., Michaels, T., Saff, E.B.: A comparison of popular point configurations on \(\mathbb {S}^{2}\). Dolomites Research Notes on Approximation 9, 16–49 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J Fourier Anal. Appl. 13, 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Electrons on the sphere. In: Ali, R.M., Ruscheweyh, S., Saff, E.B. (eds.) Computational Methods and Function Theory, pp 111–127. World Scientific Press, Singapore (1995)

  13. Reimer, M.: Spherical polynomial approximation : a survey. In: Haussmann, W., Jetter, K., Reimer, M. (eds.) Advances in Multivariate Approximation, pp 231–252. Wiley, Berlin (1999)

  14. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. The Mathematical Intelligencer 19(1), 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sloan, I.H.: Polynomial approximation on spheres – generalizing de la vallée-Poussin. Computational Methods in Applied Mathematics 11(4), 540–552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sloan, I.H., Wang, H.: On filtered polynomial approximation on the sphere. J. Fourier Anal. Appl. 23, 863–876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sloan, I.H., Womerley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  Google Scholar 

  19. Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. J Approx. Theory 103, 91–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sloan, I.H., Womersley, R.S.: Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. International Journal on Geomathematics 3(1), 95–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Szego, G.: Orthogonal Polynomials. American Mathematical Society, Providence, Rhode Island, USA, 4th edition (1975)

  22. Themistoclakis, W., Van Barel, M.: Generalized de la Vallée Poussin approximation on [-1,1]. Numer Algor. 75, 1–31 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for his valuable comments and suggestions to improve the quality of the paper, and Ed Saff for providing us reference [9]. The research of the first author was partially supported by GNCS–INDAM, and that of the second author by the Research Council KU Leuven, C1-project (Numerical Linear Algebra and Polynomial Computations), and by the Fund for Scientific Research–Flanders (Belgium), “SeLMA” - EOS reference number: 30468160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woula Themistoclakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Themistoclakis, W., Van Barel, M. Uniform approximation on the sphere by least squares polynomials. Numer Algor 81, 1089–1111 (2019). https://doi.org/10.1007/s11075-018-0584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0584-1

Keywords

Mathematics Subject Classification (2010)

Navigation