[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Filtered hyperinterpolation: a constructive polynomial approximation on the sphere

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

This paper considers a fully discrete filtered polynomial approximation on the unit sphere \({\mathbb{S}^{d}.}\) For \({f \in C(\mathbb{S}^{d}),V_{L,N}^{(a)} \, f}\) is a polynomial approximation which is exact for all spherical polynomials of degree at most L, so it inherits good convergence properties in the uniform norm for sufficiently smooth functions. The oscillations often associated with polynomial approximation of less smooth functions are localised by using a filter with support [0, a] for some a > 1, and with the value 1 on [0, 1]. The allowed choice of filters includes a recently introduced filter with minimal smoothness, and other smoother filters. The approximation uses a cubature rule with N points which is exact for all polynomials of degree \({t = \left\lceil{a L}\right\rceil+L-1.}\) The main theoretical result is that the uniform norm \({\|V_{L,N}^{(a)} \|}\) of the filtered hyperinterpolation operator is bounded independently of L, providing both good convergence and stability properties. Numerical experiments on \({\mathbb{S}^{2}}\) with a variety of filters, support intervals and cubature rules illustrate the uniform boundedness of the operator norm and the convergence of the filtered hyperinterpolation approximation for both an arbitrarily smooth function and a function with derivative discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, C.P., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximation on the sphere using spherical designs. (2011, submitted)

  • Bauer R.: Distribution of points on a sphere with application to star catalogs. J Guid. Control Dyn. 23, 130–137 (2000)

    Article  Google Scholar 

  • Berman, D.L.: On a class of linear operators. Dokl. Akad. Nauk SSSR 85, 13–16 (1952, Russian)

    Google Scholar 

  • Dai F.: On generalized hyperinterpolation on the sphere. Proc. Am. Math. Soc. 134, 2931–2941 (2006)

    Article  MATH  Google Scholar 

  • Daugavet I.K.: Some applications of the Marcinkiewicz-Berman identity. Vestnik Leningrad Univ. Math. 1, 321–327 (1974)

    MathSciNet  Google Scholar 

  • De Vore R.A., Lorentz G.G.: Constructive Approximation. Springer, Berlin (1993)

    Google Scholar 

  • Filbir F., Themistoclakis W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. 281, 650–668 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Filbir F., Mhaskar H.N., Prestin J.: On a filter for exponentially localized kernels based on Jacobi polynomials. J. Approx. Theory 160, 256–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Schreiner M.: Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constr. Approx. 14, 493–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Gronwall T.H.: On the degree of convergence of Laplace’s series. Trans. Am. Math. Soc. 15, 1–30 (1914)

    MathSciNet  MATH  Google Scholar 

  • Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 1185–1219. Springer, Berlin (2010)

  • Korovkin, P.P.: Linear Operators and Approximation Theory. Fizmatgiz, Moscow (1959). English edition: Hindustan Publ. Co., Delhi, 1960

  • Mhaskar H.N.: Weighted quadrature formulas and approximation by zonal function networks on the sphere. J. Complexity 22, 348–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ragozin D.L.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 162, 157–170 (1971)

    MathSciNet  Google Scholar 

  • Rakhmanov E.A., Saff E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Reimer M.: Generalized hyperinterpolation on the sphere and the Newman-Shapiro operators. Constr. Approx. 18, 183–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Reimer M.: Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  • Renka R.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Softw. 14, 139–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Rustamov, K.P.: On the approximation of functions on the sphere. Izv. Ross. Akad. Nauk Ser. Mat. 57(5), 127–148 (1993). English translation in Russian Acad. Sci. Izv. Math. 43(2), 311–329 (1994)

  • Sloan I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83, 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan I.H.: Polynomial approximation on spheres—generalizing de la Vallée-Poussin. Comput. Methods Appl. Math. 11, 540–552 (2011)

    Google Scholar 

  • Sloan I.H., Womersley R.S.: Constructive polynomial approximation on the sphere. J. Approx. Theory 103, 91–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan I.H., Womersley R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K., Li L.: Harmonic Analysis and Approximation on the Sphere. Science Press, Beijing (2000)

    Google Scholar 

  • Womersley, R.S.: Spherical designs with close to the minimal number of points. Applied Mathematics Report AMR09/26, University of New South Wales (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Womersley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, I.H., Womersley, R.S. Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. Int J Geomath 3, 95–117 (2012). https://doi.org/10.1007/s13137-011-0029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-011-0029-7

Keywords

Mathematics Subject Classification (2000)

Navigation