[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the evaluation of illumination compensation algorithms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a comparison framework for algorithms that can diminish the effects of illumination in images. Its main objective is to reveal the positive and negative characteristics of such algorithms, allowing researchers to select the most appropriate one for their target application. The proposed framework utilizes artificial illumination degradations on real images, which are then processed by the tested algorithms. The results are evaluated by an ensemble of performance metrics, highlighting the various characteristics of the algorithms across a range of different image attributes. The proposed framework represents a useful tool for the selection of illumination compensation algorithms due to a) its quantitative nature, b) its multifaceted analysis and c) its easy reproducibility. The validity of the proposed framework is tested by applying it to the enhancement results of four illumination compensation algorithms, which are used as preprocessing in two classic computer vision applications. The improvements brought about by the algorithms are in accordance with the predictions of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.create.uwe.ac.uk/

References

  1. Aggarwal M, Ahuja N (2004) Split aperture imaging for high dynamic range. Int J Comput Vis 58(1): 7–17

    Article  Google Scholar 

  2. Avcibas I, Sankur B, Sayood K (2002) Statistical evaluation of image quality measures. J Electron Imaging 11(2):206–223 . doi:10.1117/1.1455011

    Article  Google Scholar 

  3. Battiato S, Castorina A, Mancuso M (2003) High dynamic range imaging for digital still camera: an overview. J Electron Imaging 12:459–469. doi:10.1117/1.1580829

    Article  Google Scholar 

  4. Bertalmío M, Caselles V, Provenzi E (2009) Issues about retinex theory and contrast enhancement. Int J Comput Vis 83(1):101–119 . doi:10.1007/s11263-009-0221-5

    Article  Google Scholar 

  5. Čadík M, Wimmer M, Neumann L, Artusi A (2006) Image attributes and quality for evaluation of tone mapping operators. In: Proceedings of pacific graphics 2006 (14th pacific conference on computer graphics and applications), pp 35–44. National Taiwan University Press

  6. Cao W, Che R, Ye D (2008) An illumination-independent edge detection and fuzzy enhancement algorithm based on wavelet transform for non-uniform weak illumination images. Pattern Recogn Lett 29(3):192–199

    Article  Google Scholar 

  7. Ciocca G, Marini D, Rizzi A, Schettini R, Zuffi S (2003) Retinex preprocessing of uncalibrated images for color-based image retrieval. J Electronic Imaging 12(1):161–172

    Article  Google Scholar 

  8. Dubey SR, Singh SK, Singh RK (2015) A multi-channel based illumination compensation mechanism for brightness invariant image retrieval. Multimed Tools Appl 74(24):11,223–11,253 . doi:10.1007/s11042-014-2226-5

    Article  Google Scholar 

  9. Finlayson GD, Hordley SD, Drew MS (2002) Removing shadows from images using retinex. In: The tenth color imaging conference: color science and engineering systems, technologies, applications, CIC 2002, November 12, 2002, Scottsdale, Arizona, USA, pp. 73–79. IST - The Society for Imaging Science and Technology. http://www.imaging.org/store/epub.cfm?abstrid=8402

  10. Funt B, Ciurea F, McCann J (2004) Retinex in matlab. J Electron Imaging 13(1):48–57. doi:10.1117/1.1636761

    Article  Google Scholar 

  11. Goshtasby AA (2005) Fusion of multi-exposure images. Image Vis Comput 23(6):611–618

    Article  Google Scholar 

  12. Han Y, Zhang Z (2014) An efficient estimation method for intensity factor of illumination changes. Multimed Tools Appl 72(3):2619–2632. doi:10.1007/s11042-013-1521-x

    Article  Google Scholar 

  13. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of fourth alvey vision conference, pp 147–151

  14. Hasler D, Suesstrunk SE (2003) Measuring colorfulness in natural images. In: Rogowitz BE, Pappas TN (eds) Human vision and electronic imaging VIII, vol 5007, pp 87–95. doi:10.1117/12.477378

  15. Iakovidou C, Vonikakis V, Andreadis I (2008) Fpga implementation of a real-time biologically inspired image enhancement algorithm. J Real-Time Image Proc 3(4):269–287

    Article  Google Scholar 

  16. Jobson D, Rahman ZU, Woodell G (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–976. doi:10.1109/83.597272

    Article  Google Scholar 

  17. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462. doi:10.1109/83.557356

    Article  Google Scholar 

  18. Kimmel R, Elad M, Shaked D, Keshet R, Sobel I (2003) A variational framework for retinex. Int J Comput Vis 52(1):7–23. doi:10.1023/A:1022314423998

    Article  MATH  Google Scholar 

  19. Kong TL, Isa NAM (2016) Enhancer-based contrast enhancement technique for non-uniform illumination and low-contrast images. Multimed Tools Appl 1–22. doi:10.1007/s11042-016-3787-2

  20. Konstantinidis K, Vonikakis V, Panitsidis G, Andreadis I (2011) A center-surround histogram for content-based image retrieval. Pattern Anal Appl 14(3):251–260. doi:10.1007/s10044-011-0217-y

    Article  MathSciNet  Google Scholar 

  21. Kuang J, Yamaguchi H, Johnson GM, Fairchild MD (2004) Testing hdr image rendering algorithms. Color and Imaging Conference 2004(1):315–320

    Google Scholar 

  22. Kuo CM, Yang NC, Liu CS, Tseng PY, Chang CK (2016) An effective and flexible image enhancement algorithm in compressed domain. Multimed Tools Appl 75(2):1177–1200. doi:10.1007/s11042-014-2363-x

    Article  Google Scholar 

  23. Kushwaha AKS, Srivastava R (2016) Automatic moving object segmentation methods under varying illumination conditions for video data: comparative study, and an improved method. Multimed Tools Appl 75 (23):16,209–16,264. doi:10.1007/s11042-015-2927-4

    Article  Google Scholar 

  24. Lai YR, Tsai PC, Yao CY, Ruan SJ (2015) Improved local histogram equalization with gradient-based weighting process for edge preservation. Multimed Tools Appl 1–29. doi:10.1007/s11042-015-3147-7

  25. LAND EH (1964) The retinex. Am Sci 52(2):247–264

    Google Scholar 

  26. Land EH (1986) An alternative technique for the computation of the designator in the retinex theory of color vision Proc Natl Acad Sci U S A

  27. Le HS, Li H (2008) Fused logarithmic transform for contrast enhancement. Electron Lett 44(1): 19–20

    Article  Google Scholar 

  28. Ledda P, Chalmers A, Troscianko T, Seetzen H (2005) Evaluation of tone mapping operators using a high dynamic range display. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05. ACM, New York, NY, USA, pp 640–648. doi:10.1145/1186822.1073242.

    Chapter  Google Scholar 

  29. Lin GS, Ji XW (2016) Video quality enhancement based on visual attention model and multi-level exposure correction. Multimed Tools Appl 75 (16):9903–9925. doi:10.1007/s11042-015-2777-0

    Article  Google Scholar 

  30. Lin TL, Thakur US, Chou CC, Chen SL (2016) Hole filling using multiple frames and iterative texture synthesis with illumination compensation. Multimedia Tools and Applications 75(4):1899–1921. doi:10.1007/s11042-014-2379-2

    Article  Google Scholar 

  31. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  32. Matsushita Y, Nishino K, Ikeuchi K, Sakauchi M (2004) Illumination normalization with time-dependent intrinsic images for video surveillance. IEEE Trans Pattern Anal Mach Intell 26(10):1336–1347. doi:10.1109/TPAMI.2004.86

    Article  Google Scholar 

  33. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86. doi:10.1023/B:VISI.0000027790.02288.f2

    Article  Google Scholar 

  34. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630. doi:10.1109/TPAMI.2005.188

    Article  Google Scholar 

  35. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1):43–72. doi:10.1007/s11263-005-3848-x

    Article  Google Scholar 

  36. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364. doi:10.1109/TIP.2011.2147325

    Article  MathSciNet  MATH  Google Scholar 

  37. Nalpantidis L, Gasteratos A (2010) Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image Vis Comput 28(6):940–951. doi:10.1016/j.imavis.2009.11.011

    Article  Google Scholar 

  38. Provenzi E, Fierro M, Rizzi A, Carli LD, Gadia D, Marini D (2007) Random spray retinex: a new retinex implementation to investigate the local properties of the model. IEEE Trans Image Process 16(1):162–171. doi:10.1109/TIP.2006.884946

    Article  MathSciNet  Google Scholar 

  39. Provenzi E, Gatta C, Fierro M, Rizzi A (2008) A spatially variant white-patch and gray-world method for color image enhancement driven by local contrast. IEEE Trans Pattern Anal Mach Intell 30(10):1757–1770. doi:10.1109/TPAMI.2007.70827

    Article  Google Scholar 

  40. Rahman Zu, Jobson DJ, Woodell GA (2004) Retinex processing for automatic image enhancement. J Electron Imaging 13(1):100–110. doi:10.1117/1.1636183

    Article  Google Scholar 

  41. Rao Y, Hou L, Wang Z, Chen L (2014) Illumination-based nighttime video contrast enhancement using genetic algorithm. Multimedia Tools and Applications 70 (3):2235–2254. doi:10.1007/s11042-012-1226-6

    Article  Google Scholar 

  42. Rizzi A, Gatta C, Marini D (2003) A new algorithm for unsupervised global and local color correction. Pattern Recogn Lett 24(11):1663–1677

    Article  Google Scholar 

  43. Saponara S, Fanucci L, Marsi S, Ramponi G (2007) Algorithmic and architectural design for real-time and power-efficient retinex image/video processing. J Real-Time Image Proc 1(4):267–283

    Article  Google Scholar 

  44. Schlick C (1994) Quantization techniques for visualization of high dynamic range pictures. Springer, Heidelberg, pp 7–20

    Google Scholar 

  45. Shen J, Yang X, Jia Y, Li X (2011) Intrinsic images using optimization. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 3481–3487. doi:10.1109/CVPR.2011.5995507

  46. Sobol R (2004) Improving the retinex algorithm for rendering wide dynamic range photographs. J Electron Imaging 13(1):65–74. doi:10.1117/1.1636762

    Article  MathSciNet  Google Scholar 

  47. del Solar JR, Quinteros J (2008) Illumination compensation and normalization in eigenspace-based face recognition: a comparative study of different pre-processing approaches. Pattern Recogn Lett 29(14):1966–1979. doi:10.1016/j.patrec.2008.06.015

    Article  Google Scholar 

  48. Tenenbaum JM (1971) Accommodation in computer vision. Ph.D. thesis, Stanford, CA, USA. AAI7119769

  49. Vonikakis V, Andreadis I, Gasteratos A (2008) Fast centre-surround contrast modification. IET Image Process 2(1):19–34

    Article  Google Scholar 

  50. Vonikakis V, Chrysostomou D, Kouskouridas R, Gasteratos A (2013) A biologically inspired scale-space for illumination invariant feature detection. Meas Sci Technol 24(7):074–024. http://stacks.iop.org/0957-0233/24/i=7/a=074024

    Article  Google Scholar 

  51. Vonikakis V, Kouskouridas R, Gasteratos A (2013) A comparison framework for the evaluation of illumination compensation algorithms. In: 2013 IEEE international conference on imaging systems and techniques (IST), pp 264–268. doi:10.1109/IST.2013.6729703

  52. Vonikakis V, Winkler S (2012) Emotion-based sequence of family photos. In: Proceedings of the 20th ACM international conference on multimedia, MM ’12. ACM, New York, NY, USA, pp 1371–1372. doi:10.1145/2393347.2396490

    Chapter  Google Scholar 

  53. Werner F, Maire F, Sitte J (2009) Topological slam using fast vision techniques. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  54. Xiong W, Funt B (2009) Stereo retinex. Image Vis Comput 27(1–2):178 –188

    Article  Google Scholar 

  55. Yendrikhovski SN, Blommaert FJJ, de Ridder H (1998) Perceptually optimal color reproduction. doi:10.1117/12.320117

  56. Yoshida A, Blanz V, Myszkowski K, Seidel HP (2005) Perceptual evaluation of tone mapping operators with real-world scenes. doi:10.1117/12.587782

  57. Zhou S, Zhang F, Siddique MA (2015) Range limited peak-separate fuzzy histogram equalization for image contrast enhancement. Multimed Tools Appl 74(17):6827–6847. doi:10.1007/s11042-014-1931-4

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the research grant for the Human-Centered Cyber-physical Systems Programme at the Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology and Research (A*STAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Vonikakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vonikakis, V., Kouskouridas, R. & Gasteratos, A. On the evaluation of illumination compensation algorithms. Multimed Tools Appl 77, 9211–9231 (2018). https://doi.org/10.1007/s11042-017-4783-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4783-x

Keywords

Navigation