[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Center-Surround Histogram for content-based image retrieval

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a new type of histogram which incorporates only the visual information surrounding the edges of the image is introduced. The edge extraction operation is performed with the use of a center-surround operator of the Human Visual System. The proposed Center-Surround Histogram (CSH) has two main advantages over the classic histogram. First, it reduces the amount of visual information that needs to be processed and second, it incorporates a degree of spatial information when used in content based image retrieval applications. The method is compared with other contemporary image retrieval methods, including that of another edge color histogram, on two different databases. The comparison shows that the use of CSH exhibits better results in shorter execution times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fauzi M, Lewis P (2008) A multiscale approach to texture based image retrieval. Pattern Anal Appl 11:141–157

    Article  MathSciNet  Google Scholar 

  2. Tsapatsoulis N, Avrithis YS, Kollias SD (2001) Facial image indexing in multimedia databases. Pattern Anal Appl 4(2–3):93–107

    MathSciNet  MATH  Google Scholar 

  3. Ladret P, Guérin-Dugué A (2001) Categorisation and retrieval of scene photographs from jpeg compressed database. Pattern Anal Appl 4(2–3):185–199

    MATH  Google Scholar 

  4. del Bimbo A (1999) Visual information retrieval. Academic Press, San Diego

  5. Konstantinidis K, Andreadis I (2005) Performance and computational burden of histogram based color image retrieval techniques. J Comput Methods Sci Eng 5:141–147

    MATH  Google Scholar 

  6. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  7. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice-Hall, Englewood Cliffs

  8. Castelli V, Bergmann LD (2001) Image databases—search and retrieval of digital imagery. Wiley, NY

  9. Choraś RS, Andrysiak T, Choraś M (2007) Integrated color, texture and shape information for content-based image retrieval. Pattern Anal Appl 10(4):333–343

    Article  MathSciNet  Google Scholar 

  10. Gagliardi I, Schettini R (1997) A method for the automatic indexing of colour images for effective image retrieval. New Rev Hypermedia Multimedia 3:201–224

    Article  Google Scholar 

  11. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: CVPR ’97: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97). IEEE Computer Society, Washington, DC, p 762

  12. Minka TP, Picard RW (1997) Interactive learning with a “society of models”. Pattern Recogn. 30(4):565–581

    Article  Google Scholar 

  13. Gasteratos A, Zafeiridis P, Andreadis I (2004) An intelligent system for aerial image retrieval and classification. In Vouros GA, Panayiotopoulos T (eds) SETN. Lecture notes in computer science, vol 3025. Springer, Berlin, pp 63–71

  14. Fauzi MFA, Lewis PH (2006) Automatic texture segmentation for content-based image retrieval application. Pattern Anal Appl 9(4):307–323

    Article  MathSciNet  Google Scholar 

  15. Jain AK, Vailaya A (1996) Image retrieval using color and shape. Pattern Recogn 29(8):1233–1244

    Article  Google Scholar 

  16. Carson C, Thomas M, Belongie S, Hellerstein JM, Malik J (1999) Blobworld: a system for region-based image indexing and retrieval. In: VISUAL ’99: proceedings of the third international conference on visual information and information systems. Springer, London, pp 509–516

  17. Cheng YC, Chen SY (2003) Image classification using color, texture and regions. Image Vis Comput 21(9):759–776

    Article  Google Scholar 

  18. Hermes T, Klauck C, Kreys J, Zhang J (1995) Image retrieval for information systems. In: Storage and retrieval for image and video databases (SPIE), pp 394–405

  19. Ma WY, Manjunath BS (1999) Netra: a toolbox for navigating large image databases. Multimedia Syst 7(3):184–198

    Article  Google Scholar 

  20. Pass G, Zabih R (1999) Comparing images using joint histograms. Multimedia Syst 7(3):234–240

    Article  Google Scholar 

  21. Vertan C, Boujemaa N (2000) Upgrading color distributions for image retrieval: can we do better? In Laurini R (ed) VISUAL. Lecture notes in computer science, vol 1929. Springer, Berlin, pp 178–188

  22. Wang JZ (2001) Integrated region-based image retrieval. Kluwer, Norwell

  23. Liang Y, Zhai H, Chavel P (2002) Fuzzy color-image retrieval. Opt Commun 212:247–250

    Article  Google Scholar 

  24. Yang NC, Chang WH, Kuo CM, Li TH (2008) A fast mpeg-7 dominant color extraction with new similarity measure for image retrieval. J Vis Commun Image Represent 19(2):92–105

    Article  Google Scholar 

  25. Martin P, Grunert U (2004) Ganglion cells in mammalian retinae. In: The visual neurosciences, vol 1. MIT Press, Cambridge, pp 410–421

  26. Grossberg S, Hong S (2006) A neural model of surface perception: lightness, anchoring, and filling-in. Spatial Vis 19:263–321

    Article  Google Scholar 

  27. Pinna B, Brelstaff G, Spillmann L (2001) Surface color from boundaries: a new “watercolor” illusion. Vis Res 41:2669–2676

    Article  Google Scholar 

  28. Pinna B, Grossberg S (2005) The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms. J Opt Soc Am A 22(10):2207–2221

    Article  Google Scholar 

  29. Russell BC, Torralba A, Murphy KP, Freeman WT (2005) Labelme: a database and web-based tool for image annotation. MIT AI Lab Memo AIM-2005-025 1:1–10

  30. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, San Diego

  31. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  32. Quist M, Yona G (2004) Distributional scaling: an algorithm for structure-preserving embedding of metric and nonmetric spaces. J Mach Learn Res 5:399–420

    MathSciNet  Google Scholar 

  33. Hafner J, Sawhney HS, Equitz W, Flickner M, Niblack W (1995) Efficient color histogram indexing for quadratic form distance functions. IEEE Trans Pattern Anal Mach Intell 17(7):729–736

    Article  Google Scholar 

  34. Shim SO, Choi TS (2002) Edge color histogram for image retrieval. In: International conference on image processing, pp 957–960

  35. Konstantinidis K, Gasteratos A, Andreadis I (2007) The impact of low-level features in semantic-based image retrieval. In: Semantic-based visual information retrieval. IRM Press, USA, pp 23–45

  36. Müller H, Müller W, Marchand-Maillet S, Pun T, Squire D (2000) Strategies for positive and negative relevance feedback in image retrieval. In: ICPR, pp 5043–5046

  37. Müller H, Müller W, Squire D, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposals. Pattern Recogn Lett 22(5):593–601

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Konstantinidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinidis, K., Vonikakis, V., Panitsidis, G. et al. A Center-Surround Histogram for content-based image retrieval. Pattern Anal Applic 14, 251–260 (2011). https://doi.org/10.1007/s10044-011-0217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0217-y

Keywords

Navigation