[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Exploring the potential function of trace elements in human health: a therapeutic perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane’s receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Al-Fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci. 5(3):127–136. https://doi.org/10.22607/IJACS.2017.503003

    Article  CAS  Google Scholar 

  2. Kulkarni N, Kalele K, Kulkarni M, Kathariya R (2014) Trace elements in oral health and disease: an updated review. J Dent Res Rev 1:100. https://doi.org/10.4103/2348-2915.133959

    Article  Google Scholar 

  3. Chapple ILC, Brock GR, Milward MR et al (2007) Compromised GCF total antioxidant capacity in periodontitis: cause or effect? J Clin Periodontol 34:103–110. https://doi.org/10.1111/J.1600-051X.2006.01029.X

    Article  CAS  PubMed  Google Scholar 

  4. Enwonwu CO, Sanders C (2001) Nutrition: impact on oral and systemic health. Compend Contin Educ Dent 22:12–18

    CAS  PubMed  Google Scholar 

  5. Kumer A, Chakma U, Matin MM et al (2021) The computational screening of inhibitor for black fungus and white fungus by D-glucofuranose derivatives using in silico and SAR study. Org Commun 14:336–353. https://doi.org/10.25135/acg.oc.116.2108.2188

    Article  CAS  Google Scholar 

  6. Prashanth L, Kattapagari KK, Chitturi RT et al (2015) A review on role of essential trace elements in health and disease. J Dr NTR Univ Heal Sci 4:75. https://doi.org/10.4103/2277-8632.158577

    Article  Google Scholar 

  7. Moynihan PJ (2005) Special theme-oral health. Bull World Health Organ 83(9):694–699

  8. Chen M, Andersen RM, Barmes DE, Leclerq MH, Lyttle CS, World Health Organization (1997) Comparing oral health care systems: a second international collaborative study. World Health Organ. https://apps.who.int/iris/handle/10665/41976

  9. Rahman MM, Islam MR, Shohag S et al (2022) The multifunctional role of herbal products in the management of diabetes and obesity: a comprehensive review. Molecules 27:1713. https://doi.org/10.3390/MOLECULES27051713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wada O (2004) What are trace elements? J Japan Med Assoc 47:607–612

    Google Scholar 

  11. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Hindawi Limited

    Google Scholar 

  12. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244. https://doi.org/10.1016/J.MAM.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  13. WHO (1973) Trace elements in human nutrition: report of a WHO expert committee. WHO Tech Rep Ser

    Google Scholar 

  14. Frieden E (1985) New perspectives on the essential trace elements. J Chem Educ 62:915. https://doi.org/10.1021/ED062P917

    Article  Google Scholar 

  15. Frieden E (1974) The evolution of metals as essential elements (with special reference to iron and copper). Adv Exp Med Biol 48:1–29. https://doi.org/10.1007/978-1-4684-0943-7_1/COVER

    Article  CAS  PubMed  Google Scholar 

  16. Willis MS, Monaghan SA, Miller ML et al (2005) Zinc-induced copper deficiency a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123:125–131. https://doi.org/10.1309/V6GVYW2QTYD5C5PJ

    Article  PubMed  Google Scholar 

  17. Khan-Mayberry N, Osredkar J, Sustar N (2011) Journal of clinical toxicology special issue title: heavy metal toxicity handling editors clinical toxicology copper and zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol. https://doi.org/10.4172/2161-0494.S3-001

    Article  Google Scholar 

  18. Minoia C, Sabbioni E, Apostoli P et al (1990) Trace element reference values in tissues from inhabitants of the European community. I: a study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ 95:89–105. https://doi.org/10.1016/0048-9697(90)90055-Y

    Article  CAS  PubMed  Google Scholar 

  19. Adelstein SJ, Vallee BL (1961) Copper metabolism in man. N Engl J Med 265:892–897. https://doi.org/10.1056/NEJM196111022651806

    Article  CAS  PubMed  Google Scholar 

  20. Harris ED (2001) Copper homeostasis: the role of cellular transporters. Nutr Rev 59:281–285. https://doi.org/10.1111/J.1753-4887.2001.TB07017.X

    Article  CAS  PubMed  Google Scholar 

  21. Groff J, Gropper S, Hunt SJC. New York, Page...—Google scholar. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J.+Groff%2C+S.+Gropper%2C+S.J.C.+Hunt%2C+New+York%2C+Page+115+in+Advanced+Nutrition+and+Human+Metabolism%2C+West+Publ%2C++%281995%29.&btnG=. Accessed 13 Dec 2022

  22. Berg J (1994) Principles of bioinorganic chemistry

  23. Araya M, Pizarro F, Olivares M et al (2006) Understanding copper homeostasis in humans and copper effects on health. Biol Res 39:183–187. https://doi.org/10.4067/S0716-97602006000100020

    Article  CAS  PubMed  Google Scholar 

  24. Rahman MM, Islam MR, Akash S et al (2022) Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: at a glance. Biomed Pharmacother 153:113305. https://doi.org/10.1016/J.BIOPHA.2022.113305

    Article  CAS  PubMed  Google Scholar 

  25. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403. https://doi.org/10.1079/BJN2002558

    Article  CAS  PubMed  Google Scholar 

  26. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621S-629S. https://doi.org/10.1093/AJCN/71.2.621S

    Article  CAS  PubMed  Google Scholar 

  27. Wapnir R (1990) Protein nutrition and mineral absorption

  28. Zinc, the brain and behavior.—PsycNET. https://psycnet.apa.org/record/1982-30442-001. Accessed 13 Dec 2022

  29. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2006) Zinc in plants. New Phytol 173:677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

    Article  CAS  PubMed  Google Scholar 

  30. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. https://doi.org/10.2174/0929867053764635

    Article  CAS  PubMed  Google Scholar 

  31. Solomons NW (1998) Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr Rev 56:27–28. https://doi.org/10.1111/J.1753-4887.1998.TB01656.X

    Article  CAS  PubMed  Google Scholar 

  32. Rahman MM, Islam MR, Akash S et al (2022) Naphthoquinones and derivatives as potential anticancer agents: an updated review. Chem Biol Interact 368:110198. https://doi.org/10.1016/J.CBI.2022.110198

    Article  CAS  PubMed  Google Scholar 

  33. Heyneman CA (1996) Zinc deficiency and taste disorders. Ann Pharmacother 30:186–187. https://doi.org/10.1177/106002809603000215

    Article  CAS  PubMed  Google Scholar 

  34. Prasad AS, Beck FWJ, Grabowski SM et al (1997) Zinc deficiency: changes in cytokine production and T-cell subpopulations in patients with head and neck cancer and in noncancer subjects. Proc Assoc Am Physicians 109:68–77

    CAS  PubMed  Google Scholar 

  35. Simmer K, Thompson RPH (1985) Zinc in the fetus and newborn. Acta Pædiatrica 74:158–163. https://doi.org/10.1111/J.1651-2227.1985.TB10126.X

    Article  Google Scholar 

  36. Fabris N, Mocchegiani E (1995) Zinc, human diseases and aging. Aging Clin Exp Res 72(7):77–93. https://doi.org/10.1007/BF03324297

    Article  Google Scholar 

  37. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18. https://doi.org/10.1016/J.JTEMB.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  38. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes. J Am Diet Assoc 101(3):294–301. https://doi.org/10.1016/S0002-8223(01)00078-5

    Article  CAS  PubMed  Google Scholar 

  39. Milbury PE, 1950-, Richer AC (2008) Understanding the antioxidant controversy. 174

  40. Barceloux DG, Barceloux DD (1999) Cobalt. J Toxicol 37:201–216. https://doi.org/10.1081/CLT-100102420

    Article  CAS  Google Scholar 

  41. Yamagata N, Murata S, Torii T (1962) The cobalt content of human body. J Radiat Res 3:4–8. https://doi.org/10.1269/JRR.3.4

    Article  CAS  PubMed  Google Scholar 

  42. Recommended Dietary Allowances: 10th Edition—National Research Council, Commission on Life Sciences, Food and Nutrition Board, Subcommittee on the Tenth Edition of the Recommended Dietary Allowances—Google Books. https://books.google.com.bd/books?hl=en&lr=&id=gYaJq2S6Ud0C&oi=fnd&pg=PT11&dq=R.D.J.N.R.C.-N.A.P.W.+Allowances,+DC,+USA,+Recommended+dietary+allowances,++(1989)&ots=VwBhyXsx8U&sig=-nHF7rSzRWMw5PRx5XYzxu2pWOQ&redir_esc=y#v=onepage&q&f=false. Accessed 14 Dec 2022

  43. Christensen JM, Poulsen OM, Thomsen M (1993) A short-term cross-over study on oral administration of soluble and insoluble cobalt compounds: sex differences in biological levels. Int Arch Occup Environ Heal 65(4):233–240. https://doi.org/10.1007/BF00381196.

    Article  Google Scholar 

  44. Czarnek K, Terpilowska S, Siwicki AK (2015) Review paper<br>Selected aspects of the action of cobalt ions in the human body. Cent Eur J of Immunology 40:236–242. https://doi.org/10.5114/CEJI.2015.52837

    Article  Google Scholar 

  45. Rahman MM, Dhar PS et al (2022) Exploring the plant-derived bioactive substances as antidiabetic agent: an extensive review. Biomed Pharmacother 152:113217. https://doi.org/10.1016/J.BIOPHA.2022.113217

    Article  CAS  PubMed  Google Scholar 

  46. Rahman MM, Islam MR, Rabbi F et al (2022) Bioactive compounds and diabetes mellitus: prospects and future challenges. Curr Pharm Des 28:1304–1320. https://doi.org/10.2174/1381612828666220412090808

    Article  CAS  PubMed  Google Scholar 

  47. Lombaert N, Lison D, Van Hummelen P, Kirsch-Volders M (2008) In vitro expression of hard metal dust (WC–Co)—responsive genes in human peripheral blood mononucleated cells. Toxicol Appl Pharmacol 227:299–312. https://doi.org/10.1016/J.TAAP.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  48. Krejpcio Z (2001) Essentiality of chromium for human nutrition and health. Polish J Environ Stud 10:399–404

    CAS  Google Scholar 

  49. Mehri A (2020) Trace elements in human nutrition (II)—an update. Int J Prev Med. https://doi.org/10.4103/IJPVM.IJPVM_48_19

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tiwari A, Dwivedi AC. Role of exotic species from the Ganga river view project role of cyprinus carpio and oreochromis niloticus in fish biodiversity view project

  51. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  52. Serwin AB, Wasowicz W, Gromadzinska J, Chodynicka B (2003) Selenium status in psoriasis and its relations to the duration and severity of the disease. Nutrition 19:301–304. https://doi.org/10.1016/S0899-9007(02)01081-X

    Article  CAS  PubMed  Google Scholar 

  53. Kuo HW, Chen SF, Wu CC et al (2002) (2002) Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res 891(89):1–11. https://doi.org/10.1385/BTER:89:1:1

    Article  Google Scholar 

  54. Arthur JR, Beckett GJ (1989) Selenium deficiency and thyroid hormone metabolism. Selenium Biol Med. https://doi.org/10.1007/978-3-642-74421-1_18

    Article  Google Scholar 

  55. Contempre B, Dumont JE, Ngo B, Thilly CH, Diplock AT, Vanderpas J (1991) Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J Clin Endocrinol Metab 73:213–215. https://doi.org/10.1210/JCEM-73-1-213

    Article  CAS  PubMed  Google Scholar 

  56. Coughlan MP (1983) The role of molybdenum in human biology. J Inherit Metab Dis 6:70–77. https://doi.org/10.1007/BF01811327

    Article  CAS  PubMed  Google Scholar 

  57. Suttle NF (1974) Recent studies of the copper-molybdenum antagonism. Proc Nutr Soc 33:299–305. https://doi.org/10.1079/PNS19740053

    Article  CAS  PubMed  Google Scholar 

  58. Walravens PA (1980) Nutritional importance of copper and zinc in neonates and infants. Clin Chem 26:185–189

    Article  CAS  PubMed  Google Scholar 

  59. Halsted JA, Smith JC, Irwin MI (1974) A conspectus of research on zinc requirements of man. J Nutr 104:345–378. https://doi.org/10.1093/JN/104.3.345

    Article  CAS  PubMed  Google Scholar 

  60. Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S-964S. https://doi.org/10.1093/AJCN/67.5.960S

    Article  CAS  PubMed  Google Scholar 

  61. Solomons NW (1993) Pathways to the impairment of human nutritional status by gastrointestinal pathogens. Parasitology 107:S19–S35. https://doi.org/10.1017/S003118200007548X

    Article  PubMed  Google Scholar 

  62. Leuck DB, Wiseman BR, McMillian WW (1974) Nutritional plant sprays: effect on fall armyworm feeding preferences. J Econ Entomol 67:58–60. https://doi.org/10.1093/JEE/67.1.58

    Article  CAS  Google Scholar 

  63. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22:1–87. https://doi.org/10.1016/S0098-2997(00)00006-6

    Article  CAS  PubMed  Google Scholar 

  64. Todd WR, Elvehjem CA, Hart EB (1933) Zinc in the nutrition of the rat. Am J Physiol-Legacy Content 107:146–156. https://doi.org/10.1152/AJPLEGACY.1933.107.1.146

    Article  Google Scholar 

  65. Watson TD (1998) Diet and skin disease in dogs and cats. J Nutr 128(12 Suppl):2783S–2789S. https://doi.org/10.1093/jn/128.12.2783S.

    Article  CAS  PubMed  Google Scholar 

  66. Franklin RB, Costello LC (2007) Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 463:211–217. https://doi.org/10.1016/J.ABB.2007.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751. https://doi.org/10.2337/DIACARE.27.11.2741

    Article  CAS  PubMed  Google Scholar 

  68. Costa M, Klein CB (2008) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163. https://doi.org/10.1080/10408440500534032

    Article  CAS  Google Scholar 

  69. Shi X, Dalal NS (1989) Chromium (V) and hydroxyl radical formation during the glutathione reductase-catalyzed reduction of chromium (VI). Biochem Biophys Res Commun 163:627–634. https://doi.org/10.1016/0006-291X(89)92183-9

    Article  CAS  PubMed  Google Scholar 

  70. Islam MR, Islam F, Nafady MH et al (2022) Natural small molecules in breast cancer treatment: understandings from a therapeutic viewpoint. Molecules 27:2165. https://doi.org/10.3390/MOLECULES27072165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dayan AD, Paine AJ (2016) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451. https://doi.org/10.1191/096032701682693062

    Article  Google Scholar 

  72. Lippi G, Franchini M, Guidi GC (2005) Cobalt chloride administration in athletes: a new perspective in blood doping? Br J Sports Med 39:872–873. https://doi.org/10.1136/BJSM.2005.019232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gustavsson P, Jakobsson R, Johansson H et al (1998) Occupational exposures and squamous cell carcinoma of the oral cavity, pharynx, larynx, and oesophagus: a case-control study in Sweden. Occup Environ Med 55:393–400. https://doi.org/10.1136/OEM.55.6.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burch RE, Hahn HKJ, Sullivan JF (1975) Newer aspects of the roles of zinc, manganese, and copper in human nutrition. Clin Chem 21:501–520. https://doi.org/10.1093/CLINCHEM/21.4.501

    Article  CAS  PubMed  Google Scholar 

  75. Rehnberg GL, Hein JF, Carter SD et al (2009) Chronic ingestion of MN3O4 by rats: tissue accumulation and distribution of manganese in two generations. J Toxicol Environ 9:175–188. https://doi.org/10.1080/15287398209530153

    Article  Google Scholar 

  76. van Rij AM, Thomson CD, McKenzie JM, Robinson MF (1979) Selenium deficiency in total parenteral nutrition. Am J Clin Nutr 32:2076–2085. https://doi.org/10.1093/AJCN/32.10.2076

    Article  PubMed  Google Scholar 

  77. Andrews ED, Hartley WJ, Grant AB (2011) Selenium-responsive diseases of animals in New Zealand. NZ Vet J 16:3–17. https://doi.org/10.1080/00480169.1968.33738

    Article  Google Scholar 

  78. Schrauzer GN, Surai PF (2009) Selenium in human and animal nutrition: resolved and unresolved issues: a partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus Schwarz (1914–1978) on the occasion of the thirtieth anniversary of his death. Crit Rev Biotechnol 29:2–9. https://doi.org/10.1080/07388550902728261

    Article  CAS  PubMed  Google Scholar 

  79. Shamberger RJ, Rukovena E, Longfield AK et al (1973) Antioxidants and cancer. I: selenium in the blood of normals and cancer patients. JNCI J Natl Cancer Inst 50:863–870. https://doi.org/10.1093/JNCI/50.4.863

    Article  CAS  PubMed  Google Scholar 

  80. Chen X, Yang G, Chen J et al (1980) Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 22(2):91–107. https://doi.org/10.1007/BF02798589

    Article  Google Scholar 

  81. Kaminsky LS, Mahoney MC, Leach J et al (1990) Fluoride: benefits and risks of exposure. Crit Rev Oral Biol Med 1:261–281. https://doi.org/10.1177/10454411900010040501/ASSET/10454411900010040501.FP.PNG_V03

    Article  CAS  PubMed  Google Scholar 

  82. Aoba T, Fejerskov O (2016) Dental fluorosis: chemistry and biology. Crti Rev Oral Biol Med 13:155–170. https://doi.org/10.1177/154411130201300206

    Article  Google Scholar 

  83. Mellberg J, Ripa L (1983) Fluoride in preventive dentistry: theory and clinical applications

  84. Brandão-Neto J, Stefan V, Mendonça BB et al (1995) The essential role of zinc in growth. Nutr Res 15:335–358. https://doi.org/10.1016/0271-5317(95)00003-8

    Article  Google Scholar 

  85. Navia JM (1970) Effect of minerals on dental caries. 123–160. https://doi.org/10.1021/BA-1970-0094.CH009

  86. Khanna S (2008) Immunological and biochemical markers in oral carcinogenesis: the public health perspective. Int J Environ Res Public Heal 5:418–422. https://doi.org/10.3390/IJERPH5050418

    Article  CAS  Google Scholar 

  87. Powrie F, Coffman RL (1993) Cytokine regulation of T-cell function: potential for therapeutic intervention. Trends Pharmacol Sci 14:164–168. https://doi.org/10.1016/0165-6147(93)90202-U

    Article  CAS  PubMed  Google Scholar 

  88. Perez VL, Lederer JA, Lichtman AH, Abbas AK (1995) Stability of Th1 and Th2 populations. Int Immunol 7:869–875. https://doi.org/10.1093/INTIMM/7.5.869

    Article  CAS  PubMed  Google Scholar 

  89. Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146. https://doi.org/10.1016/0167-5699(96)80606-2

    Article  CAS  PubMed  Google Scholar 

  90. Van der Poll T, Jansen J, Levi M et al (1994) Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. J Exp Med 180:1985–1988. https://doi.org/10.1084/JEM.180.5.1985

    Article  PubMed  Google Scholar 

  91. Islam MR, Akash S, Rahman MM et al (2022) Colon cancer and colorectal cancer: prevention and treatment by potential natural products. Chem Biol Interact 368:110170. https://doi.org/10.1016/J.CBI.2022.110170

    Article  CAS  PubMed  Google Scholar 

  92. Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34:1–7. https://doi.org/10.1016/S0928-8244(02)00345-0

    Article  CAS  PubMed  Google Scholar 

  93. Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS (2000) Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol 28:183–188. https://doi.org/10.1111/J.1574-695X.2000.TB01474.X

    Article  CAS  PubMed  Google Scholar 

  94. Romero Alvira D, Guerrero Navarro L, Gotor Lazaro MA, Roche Collado E (1995) Oxidative stress and infectious pathology. An Med Interna 12:139–149

    CAS  PubMed  Google Scholar 

  95. Speir E (2000) Cytomegalovirus gene regulation by reactive oxygen species: agents in atherosclerosis. Ann NY Acad Sci 899:363–374. https://doi.org/10.1111/J.1749-6632.2000.TB06200.X

    Article  CAS  PubMed  Google Scholar 

  96. Speir E, Yu ZX, Takeda K et al (2000) Antioxidant effect of estrogen on cytomegalovirus-induced gene expression in coronary artery smooth muscle cells. Circulation 102:2990–2996. https://doi.org/10.1161/01.CIR.102.24.2990

    Article  CAS  PubMed  Google Scholar 

  97. Rükgauer M, Neugebauer RJ, Plecko T (2001) The relation between selenium, zinc and copper concentration and the trace element dependent antioxidative status. J Trace Elem Med Biol 15(2–3):73–78. https://doi.org/10.1016/S0946-672X(01)80046-8

    Article  CAS  PubMed  Google Scholar 

  98. Konukoğlu D, Ercan M, Ayaz M, Onen S (2001) Plasma and erythrocytes antioxidant status and trace element levels in proteinuric patients with moderate glomerular function. J Trace Elem Med Biol 15:119–122. https://doi.org/10.1016/S0946-672X(01)80054-7

    Article  PubMed  Google Scholar 

  99. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133(5 Suppl 1):1460S–2S. https://doi.org/10.1093/jn/133.5.1460S

    Article  CAS  PubMed  Google Scholar 

  100. Zhang W, Cox AG (1999) Taylor EW (1999) Hepatitis C virus encodes a selenium-dependent glutathione peroxidase gene. Medizinische Klin 943(94):2–6. https://doi.org/10.1007/BF03042181

    Article  Google Scholar 

  101. Zhang W, Ramanathan CS, Nadimpalli RG et al (1999) (1999) Selenium-dependent glutathione peroxidase modules encoded by RNA viruses. Biol Trace Elem Res 702(70):97–116. https://doi.org/10.1007/BF02783852

    Article  Google Scholar 

  102. Beck MA (2013) Antioxidants and viral infections: host immune response and viral pathogenicity. J Am Coll Nutr 20:384S-388S. https://doi.org/10.1080/07315724.2001.10719172

    Article  Google Scholar 

  103. Rostan EF, Debuys HV, Madey DL, Pinnell SR (2002) Evidence supporting zinc as an important antioxidant for skin. Int J Dermatol 41:606–611. https://doi.org/10.1046/J.1365-4362.2002.01567.X

    Article  CAS  PubMed  Google Scholar 

  104. Urbani A, Bazzo R, Nardi MC et al (1998) The metal binding site of the hepatitis C virus NS3 protease. J Biol Chem 273:18760–18769. https://doi.org/10.1074/jbc.273.30.18760

    Article  CAS  PubMed  Google Scholar 

  105. De Francesco R, Pessi A, Steinkuhler C (2020) The hepatitis C virus NS3 proteinase: structure and function of a zinc-containing serine proteinase. Antivir Ther 3:99–109. https://doi.org/10.1177/135965359800303S01

    Article  Google Scholar 

  106. Barbato G, Cicero DO, Nardi MC et al (1999) The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism. J Mol Biol 289:371–384. https://doi.org/10.1006/JMBI.1999.2745

    Article  CAS  PubMed  Google Scholar 

  107. Yeung KS, Meanwell NA, Qiu Z et al (2001) Structure–activity relationship studies of a bisbenzimidazole-based, Zn2+-dependent inhibitor of HCV NS3 serine protease. Bioorg Med Chem Lett 11:2355–2359. https://doi.org/10.1016/S0960-894X(01)00457-7

    Article  CAS  PubMed  Google Scholar 

  108. Okada A, Miura T, Takeuchi H (2003) Zinc- and pH-dependent conformational transition in a putative interdomain linker region of the influenza virus matrix protein M1. Biochemistry 42:1978–1984. https://doi.org/10.1021/BI027176T

    Article  CAS  PubMed  Google Scholar 

  109. Modrof J, Becker S, Mühlberger E (2003) Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 77:3334–3338. https://doi.org/10.1128/JVI.77.5.3334-3338.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Degenkolbe R, Gilligan P, Gupta S, Bernard HU (2003) Chelating agents stabilize the monomeric state of the zinc binding human papillomavirus 16 E6 oncoprotein. Biochemistry 42:3868–3873. https://doi.org/10.1021/BI027390H

    Article  CAS  PubMed  Google Scholar 

  111. Williams MC, Gorelick RJ, Musier-Forsyth K (2002) Specific zinc-finger architecture required for HIV-1 nucleocapsid protein’s nucleic acid chaperone function. Proc Natl Acad Sci 99:8614–8619. https://doi.org/10.1073/PNAS.132128999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu LC (2002) ZAS: C2H2 zinc finger proteins involved in growth and development. Gene Expr 10:137–152. https://doi.org/10.3727/000000002783992479

    Article  CAS  PubMed  Google Scholar 

  113. Bergstrom DE, Lin X, Wood TD et al (2016) Polysulfonates derived from metal thiolate complexes as inhibitors of HIV-1 and various other enveloped viruses in vitro. Antivir Chem Chemother 13:185–195. https://doi.org/10.1177/095632020201300305

    Article  Google Scholar 

  114. Buckman JS, Bosche WJ, Gorelick RJ (2003) Human immunodeficiency virus type 1 nucleocapsid Zn 2+ fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 77:1469–1480. https://doi.org/10.1128/JVI.77.2.1469-1480.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Song L, Nath A, Geiger JD et al (2003) Human immunodeficiency virus type 1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. J Neurovirol 9:399–403. https://doi.org/10.1080/13550280390201704

    Article  CAS  PubMed  Google Scholar 

  116. McGrath CF, Buckman JS, Gagliardi TD et al (2003) Human cellular nucleic acid-binding protein Zn 2+ fingers support replication of human immunodeficiency virus type 1 when they are substituted in the nucleocapsid protein. J Virol 77:8524–8531. https://doi.org/10.1128/JVI.77.15.8524-8531.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee N, Gorelick RJ, Musier-Forsyth K (2003) Zinc finger-dependent HIV-1 nucleocapsid protein–TAR RNA interactions. Nucleic Acids Res 31:4847–4855. https://doi.org/10.1093/NAR/GKG679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Akash S, Rahman MM, Islam MR, Sharma R (2022) Emerging global concern of Langya henipavirus: pathogenicity, virulence, genomic features, and future perspectives. J Med Virol. https://doi.org/10.1002/JMV.28127

    Article  PubMed  Google Scholar 

  119. Longnecker MP, Taylor PR, Levander OA et al (1991) Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. Am J Clin Nutr 53:1288–1294. https://doi.org/10.1093/AJCN/53.5.1288

    Article  CAS  PubMed  Google Scholar 

  120. Levander OA (1997) Nutrition and newly emerging viral diseases: an overview. J Nutr 127:948S-950S. https://doi.org/10.1093/JN/127.5.948S

    Article  CAS  PubMed  Google Scholar 

  121. Combs GF, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79:179–192. https://doi.org/10.1016/S0163-7258(98)00014-X

    Article  CAS  PubMed  Google Scholar 

  122. Levander OA (1997) Beck MA (1997) Interacting nutritional and infectious etiologies of Keshan disease. Biol Trace Elem Res 561(56):5–21. https://doi.org/10.1007/BF02778980

    Article  Google Scholar 

  123. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S-1459S. https://doi.org/10.1093/JN/133.5.1457S

    Article  CAS  PubMed  Google Scholar 

  124. Ferenčík M, Ebringer L (2003) Modulatory effects of selenium and zinc on the immune system. Folia Microbiol 483(48):417–426. https://doi.org/10.1007/BF02931378

    Article  Google Scholar 

  125. High risk of HIV-related mortality is associated with seleni... : JAIDS Journal of Acquired Immune Deficiency Syndromes. https://journals.lww.com/jaids/Fulltext/1997/08150/High_Risk_of_HIV_Related_Mortality_Is_Associated.7.aspx. Accessed 14 Dec 2022

  126. Patrick L (1999) Nutrients and HIV: part one—beta carotene and selenium. Altern Med Rev 4:403–413

    CAS  PubMed  Google Scholar 

  127. Mortality risk in selenium-deficient HIV-positive children: JAIDS Journal of Acquired Immune Deficiency Syndromes. https://journals.lww.com/jaids/Abstract/1999/04150/Mortality_Risk_in_Selenium_Deficient_HIV_Positive.15.aspx. Accessed 14 Dec 2022

  128. Baum MK, Miguez-Burbano MJ, Campa A, Shor-Posner G (2000) Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J Infect Dis 182:S69–S73. https://doi.org/10.1086/315911

    Article  CAS  PubMed  Google Scholar 

  129. Zhang W, Nadimpalli RG, Dean RG (2000) Nutrition, HIV, and drug abuse: the molecular basis of a unique role for selenium. J Acquir Immune Defic Syndr 25:S53-61

    Article  PubMed  Google Scholar 

  130. Glutathione peroxidase and viral replication: Implications for viral evolution and chemoprevention—IOS Press. https://content.iospress.com/articles/biofactors/bio00435. Accessed 14 Dec 2022

  131. Kalkan A, Bulut V, Avci S et al (2002) Trace elements in viral hepatitis. J Trace Elem Med Biol 16:227–230. https://doi.org/10.1016/S0946-672X(02)80049-9

    Article  CAS  PubMed  Google Scholar 

  132. Gómez RM, Berría MI, Levander OA (2001) Host selenium status selectively influences susceptibility to experimental viral myocarditis. Biol Trace Elem Res 80:23–31. https://doi.org/10.1385/BTER:80:1:23

    Article  PubMed  Google Scholar 

  133. Cermelli C, Vinceti M, Scaltriti E et al (2002) Selenite inhibition of Coxsackie virus B5 replication: implications on the etiology of Keshan disease. J Trace Elem Med Biol 16:41–46. https://doi.org/10.1016/S0946-672X(02)80007-4

    Article  CAS  PubMed  Google Scholar 

  134. Yin S, Qin Q, Zhou B (2017) Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biol 15:1–12. https://doi.org/10.1186/S12915-017-0355-9/FIGURES/8

    Article  CAS  Google Scholar 

  135. Prasad AS (2013) Zinc deficiency in women, infants and children. J Am Coll Nutr 15:113–120. https://doi.org/10.1080/07315724.1996.10718575

    Article  Google Scholar 

  136. Hambidge KM (1989) Mild zinc deficiency in human subjects. 281–296. https://doi.org/10.1007/978-1-4471-3879-2_18

  137. Webb G (1999) Modern Nutrition in Health and Disease. M. E. Shils, J. A. Olsen, M. Shike and A. C. Ross (editors). Br J Nutr 82:331–332. https://doi.org/10.1017/S0007114599001555

    Article  CAS  Google Scholar 

  138. Gür G, Bayraktar Y, Özer D et al (1998) Determination of hepatic zinc content in chronic liver disease due to hepatitis B virus. Hepatogastroenterology 45:472–476

    PubMed  Google Scholar 

  139. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447S-463S. https://doi.org/10.1093/AJCN/68.2.447S

    Article  CAS  PubMed  Google Scholar 

  140. Baum MK, Shor-Posner G, Campa A (2000) Zinc status in human immunodeficiency virus infection. J Nutr 130:1421S-1423S. https://doi.org/10.1093/JN/130.5.1421S

    Article  CAS  PubMed  Google Scholar 

  141. Sprietsma JE (1997) Zinc-controlled Th1/Th2 switch significantly determines development of diseases. Med Hypotheses 49:1–14. https://doi.org/10.1016/S0306-9877(97)90244-9

    Article  CAS  PubMed  Google Scholar 

  142. Fernandez-Pol JA, Hamilton PD, Klos D (2001) Essential viral and cellular zinc and iron containing metalloproteins as targets for novel antiviral and anticancer agents: implications for prevention and therapy of viral diseases and cancer. Anticancer Res 21:931–957

    CAS  PubMed  Google Scholar 

  143. Alter-Koltunoff M, Ehrlich S, Dror N et al (2003) Nramp1-mediated innate resistance to intraphagosomal pathogens is regulated by IRF-8, PU.1, and Miz-1. J Biol Chem 278:44025–44032. https://doi.org/10.1074/jbc.M307954200

    Article  CAS  PubMed  Google Scholar 

  144. Garland ML, Hagmeyer KO (2016) The role of zinc lozenges in treatment of the common cold. Ann Pharmacother 32:63–69. https://doi.org/10.1345/APH.17128

    Article  Google Scholar 

  145. Hirt M, Nobel S, Barron E (2000) Zinc nasal gel for the treatment of common cold symptoms: a double-blind, placebo-controlled trial. Ear Nose Throat J 79:778–782. https://doi.org/10.1177/014556130007901008

    Article  CAS  PubMed  Google Scholar 

  146. Novick SG, Godfrey JC, Pollack RL, Wilder HR (1997) Zinc-induced suppression of inflammation in the respiratory tract, caused by infection with human rhinovirus and other irritants. Med Hypotheses 49:347–357. https://doi.org/10.1016/S0306-9877(97)90201-2

    Article  CAS  PubMed  Google Scholar 

  147. Righetti E, Celani MG, Cantisani TA et al (2002) (2014) Glycerol for acute stroke: a Cochrane systematic review. J Neurol 2494(249):445–451. https://doi.org/10.1007/S004150200037

    Article  Google Scholar 

  148. Turner RB, Cetnarowski WE (2000) Effect of treatment with zinc gluconate or zinc acetate on experimental and natural colds. Clin Infect Dis 31:1202–1208. https://doi.org/10.1086/317437/2/31-5-1202-FIG002.GIF

    Article  CAS  PubMed  Google Scholar 

  149. Turner RB (2001) Ineffectiveness of intranasal zinc gluconate for prevention of experimental rhinovirus colds. Clin Infect Dis 33:1865–1870. https://doi.org/10.1086/324347/2/33-11-1865-FIG002.GIF

    Article  CAS  PubMed  Google Scholar 

  150. Bishop NE, Anderson DA (1997) Early interactions of hepatitis A virus with cultured cells: viral elution and the effect of pH and calcium ions. Arch Virol 142(11):2161–2178. https://doi.org/10.1007/s007050050233

    Article  CAS  PubMed  Google Scholar 

  151. Dominiczak MH (1999) Tietz textbook of clinical chemistry. By C.A. Burtis and E.R. Ashwood, editors. Clin Chem Lab Med 37:11–12. https://doi.org/10.1515/cclm.2000.37.11-12.1136

    Article  Google Scholar 

  152. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163. https://doi.org/10.1016/S0300-483X(03)00159-8

    Article  CAS  PubMed  Google Scholar 

  153. Vasudevachari MB, Antony A (1982) Inhibition of avian myeloblastosis virus reverse transcriptase and virus inactivation by metal complexes of isonicotinic acid hydrazide. Antiviral Res 2:291–300. https://doi.org/10.1016/0166-3542(82)90052-3

    Article  CAS  PubMed  Google Scholar 

  154. Arthington JD, Corah LR, Blecha F (1996) The effect of molybdenum-induced copper deficiency on acute-phase protein concentrations, superoxide dismutase activity, leukocyte numbers, and lymphocyte proliferation in beef heifers inoculated with bovine herpesvirus-1. J Anim Sci 74:211–217. https://doi.org/10.2527/1996.741211X

    Article  CAS  PubMed  Google Scholar 

  155. Funseth E, Lindh U, Friman G, Ilbäck NG (2000) Relation between trace element levels in plasma and myocardium during coxsackievirus B3 myocarditis in the mouse. Biometals 13:361–367. https://doi.org/10.1023/A:1009264426047

    Article  CAS  PubMed  Google Scholar 

  156. Vellema P, Rutten VPMG, Hoek A et al (1996) The effect of cobalt supplementation on the immune response in vitamin B12 deficient Texel lambs. Vet Immunol Immunopathol 55:151–161. https://doi.org/10.1016/S0165-2427(96)05560-2

    Article  CAS  PubMed  Google Scholar 

  157. Takeuchi T, Böttcher A, Quezada CM et al (1999) Inhibition of thermolysin and human α-thrombin by cobalt(III) Schiff base complexes. Bioorg Med Chem 7:815–819. https://doi.org/10.1016/S0968-0896(98)00272-7

    Article  CAS  PubMed  Google Scholar 

  158. Efficacy of cobalt chelates in the rabbit eye model for Epit...: Cornea. https://journals.lww.com/corneajrnl/abstract/1998/09000/efficacy_of_cobalt_chelates_in_the_rabbit_eye.14.aspx. Accessed 14 Dec 2022

  159. Schwartz JA, Lium EK, Silverstein SJ (2001) Herpes simplex virus type 1 entry is inhibited by the cobalt chelate complex CTC-96. J Virol. https://doi.org/10.1128/JVI.75.9.4117-4128.2001

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nutritional management of renal disease—Google Books. https://books.google.com.bd/books?hl=en&lr=&id=4UDheedDOpoC&oi=fnd&pg=PA351&dq=R.+Vanholder,+R.+Cornelis,+A.+Dhondt,+S.+Ringoir,+Trace+element+metabolism+in+renal+disease+and+renal+failure,+Nutritional+management+of+renal+disease/Kopple+J.,+Massry+S.,(eds.).-Baltimore:+Williams+%26+Wilkins,+1997.-ISBN:+068304740X1997,+pp.+395-414&ots=gy3zsyYHU_&sig=kDcW9-ib6BPOBj-aavaC123awbw&redir_esc=y#v=onepage&q&f=false. Accessed 14 Dec 2022

  161. Alfrey AC, LeGendre GR, Kaehny WD (2009) The dialysis encephalopathy syndrome. N Engl J Med 294:184–188. https://doi.org/10.1056/NEJM197601222940402

    Article  Google Scholar 

  162. Van Renterghem D, Cornelis R, Vanholder R (1992) Behaviour of 12 trace elements in serum of uremic patients on hemodiafiltration. J Trace Elem Electrolytes Health Dis 6:169–174

    PubMed  Google Scholar 

  163. Mayer DR, Kosmus W, Pogglitsch H et al (1993) Essential trace elements in humans. Biol Trace Elem Res 371(37):27–38. https://doi.org/10.1007/BF02789399

    Article  Google Scholar 

  164. Rahman MM, Bibi S, Rahaman MS et al (2022) Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 150:113041. https://doi.org/10.1016/J.BIOPHA.2022.113041

    Article  CAS  PubMed  Google Scholar 

  165. Granadillo VA, Tahán JE, Salgado O et al (1995) The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension. Clin Chim Acta 233:47–59. https://doi.org/10.1016/0009-8981(94)05966-V

    Article  CAS  PubMed  Google Scholar 

  166. Amran MS, Bahar NB, Akash S (2022) Physiology and Pathology of the Cardiovascular System. Cardiovasc Dis. https://doi.org/10.5772/INTECHOPEN.108355

    Article  Google Scholar 

  167. Yiin SJ, Chern CL, Sheu JY, Lin TH (2000) Cadmium-induced liver, heart, and spleen lipid peroxidation in rats and protection by selenium. Biol Trace Elem Res 78:219–230. https://doi.org/10.1385/BTER:78:1-3:219

    Article  CAS  PubMed  Google Scholar 

  168. Ramos O, Carrizales L, Yanez L et al (1995) Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Perspect 103:85–88. https://doi.org/10.1289/EHP.95103S185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Salonen JT, Nyyssönen K, Korpela H et al (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86:803–811. https://doi.org/10.1161/01.CIR.86.3.803

    Article  CAS  PubMed  Google Scholar 

  170. Klevay LM (2000) Cardiovascular disease from copper deficiency—a history. J Nutr 130:489S-492S. https://doi.org/10.1093/JN/130.2.489S

    Article  CAS  PubMed  Google Scholar 

  171. Kramer HJ, Gonick HC, Lu E (1986) In vitro Inhibition of Na-K-ATPase by trace metals: relation to renal and cardiovascular damage. Nephron 44:329–336. https://doi.org/10.1159/000184015

    Article  CAS  PubMed  Google Scholar 

  172. Boscolo P, Carmignani M, Volpe AR et al (1994) Renal toxicity and arterial hypertension in rats chronically exposed to vanadate. Occup Environ Med 51:500–503. https://doi.org/10.1136/OEM.51.7.500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Richard MJ, Ducros V, Rorêt M et al (1993) Reversal of selenium and zinc deficiencies in chronic hemodialysis patients by intravenous sodium selenite and zinc gluconate supplementation. Biol Trace Elem Res 39:149–159. https://doi.org/10.1007/BF02783185

    Article  CAS  PubMed  Google Scholar 

  174. Bucher M, Sandner P, Wolf K, Kurtz A (1996) Cobalt but not hypoxia stimulates PDGF gene expression in rats. Am J Physiol Endocrinol Metabol. https://doi.org/10.1152/AJPENDO.1996.271.3.E451

    Article  Google Scholar 

  175. Pehrsson SK, Lins LE (1983) The role of trace elements in uremic heart failure. Nephron 34:93–98. https://doi.org/10.1159/000182989

    Article  CAS  PubMed  Google Scholar 

  176. Pershagen G, Hast R, Lins LE, Pehrsson K (1982) Increased arsenic concentration in the bone marrow in chronic renal failure—a contributor to anaemia ? Nephron 30:250–252. https://doi.org/10.1159/000182477

    Article  CAS  PubMed  Google Scholar 

  177. Donnelly SM, Smith EKM (1990) The role of aluminum in the functional iron deficiency of patients treated with erythropoietin: case report of clinical characteristics and response to treatment. Am J Kidney Dis 16:487–490. https://doi.org/10.1016/S0272-6386(12)80065-5

    Article  CAS  PubMed  Google Scholar 

  178. Hosokawa S, Yoshida O (1993) Serum vanadium levels in chronic hemodialysis patients. Nephron 64:388–394. https://doi.org/10.1159/000187359

    Article  CAS  PubMed  Google Scholar 

  179. Jain SK, Abreo K, Duett J, Sella M (1995) Lipofuscin products, lipid peroxides and aluminum accumulation in red blood cells of hemodialyzed patients. Am J Nephrol 15:306–311. https://doi.org/10.1159/000168854

    Article  CAS  PubMed  Google Scholar 

  180. Tamura H, Hirose S, Watanabe O et al (1994) Anemia and neutropenia due to copper deficiency in enteral nutrition. J Parenter Enter Nutr 18:185–189. https://doi.org/10.1177/0148607194018002185

    Article  CAS  Google Scholar 

  181. Fowler BA (1993) Mechanisms of kidney cell injury from metals. Environ Health Perspect 100:57–63. https://doi.org/10.1289/EHP.9310057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Staessen JA, Lauwerys RR, Buchet J-P et al (2010) Impairment of renal function with increasing blood lead concentrations in the general population. N Engl J Med 327:151–156. https://doi.org/10.1056/NEJM199207163270303

    Article  Google Scholar 

  183. Hess B, Raisin J, Zimmermann A et al (1993) Tubulointerstitial nephropathy persisting 20 months after discontinuation of chronic intake of germanium lactate citrate. Am J Kidney Dis 21:548–552. https://doi.org/10.1016/S0272-6386(12)80403-3

    Article  CAS  PubMed  Google Scholar 

  184. D’Haese PC, Schrooten I, Goodman WG et al (2000) Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int 57:1107–1114. https://doi.org/10.1046/J.1523-1755.2000.00938.X

    Article  PubMed  Google Scholar 

  185. Pun KK, Ho PWM, Lau P (1990) Effects of aluminum on the parathyroid hormone receptors of bone and kidney. Kidney Int 37:72–78. https://doi.org/10.1038/KI.1990.10

    Article  CAS  PubMed  Google Scholar 

  186. McCarthy JT, Hodgson SF, Fairbanks VF, Moyer TP (1991) Clinical and histologic features of iron-related bone disease in dialysis patients. Am J Kidney Dis 17:551–561. https://doi.org/10.1016/S0272-6386(12)80497-5

    Article  CAS  PubMed  Google Scholar 

  187. Katsuta O, Hiratsuka H, Matsumoto J et al (1994) Cadmium-induced osteomalacic and osteopetrotic lesions in ovariectomized rats. Toxicol Appl Pharmacol 126:58–68. https://doi.org/10.1006/TAAP.1994.1090

    Article  CAS  PubMed  Google Scholar 

  188. D’Haese PC, Couttenye MM, Lamberts LV et al (1999) Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem 45:1548–1556. https://doi.org/10.1093/CLINCHEM/45.9.1548

    Article  PubMed  Google Scholar 

  189. Van de Vyver FL, Visser WJ, D’Haese PC, De Broe ME (1990) Iron overload and bone disease in chronic dialysis patients. Nephrol Dial Transplant 5:781–787. https://doi.org/10.1093/NDT/5.9.781

    Article  PubMed  Google Scholar 

  190. Tadakamadla J, Kumar S, Mamatha GP (2011) Evaluation of serum copper and iron levels among oral submucous fibrosis patients. Med Oral Pathol Oral Cir Bucal 16:870–873. https://doi.org/10.4317/MEDORAL.17083

    Article  Google Scholar 

  191. Nayak AG, Chatra L, Shenai KP (2011) Analysis of copper and zinc levels in the mucosal tissue and serum of oral submucous fibrosis patients. World J Dent 1:75–78. https://doi.org/10.5005/JP-JOURNALS-10015-1015

    Article  Google Scholar 

  192. Shetty P, Shetty SR, Babu S et al (2013) Role of serum trace elements in oral precancer and oral cancer-a biochemical study. J Cancer Res Treat 1:1–3. https://doi.org/10.12691/jcrt-1-1-1

    Article  Google Scholar 

  193. Swain N, Ray JG (2011) Altered trace element level and antioxidant activity in whole blood of oral leukoplakia and cancer patients in comparison with healthy controls. Int J Oral Maxillofac Pathol 2:1–6

    CAS  Google Scholar 

  194. Jayadeep A, Raveendran Pillai K, Kannan S et al (1997) Serum levels of copper, zinc, iron and ceruplasmin in oral leukoplakia and squamous cell carcinoma. J Exp Clin Cancer Res 16:295–300

    CAS  PubMed  Google Scholar 

  195. Bonda PLF, Porrini R, Rizzio E et al (2001) Trace metals in oral mucosa in relation to the lichen ruber planus pathology: a preliminary study carried out by neutron activation analysis. J Trace Elem Med Biol 15:79–83. https://doi.org/10.1016/S0946-672X(01)80047-X

    Article  CAS  Google Scholar 

  196. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306. https://doi.org/10.1038/nature10208

    Article  CAS  PubMed  Google Scholar 

  197. Chen L, Zou Y, Peng J et al (2015) Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis. J Immunol Res. https://doi.org/10.1155/2015/909514

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yan SLS, Russell J, Granger DN (2014) Platelet activation and platelet-leukocyte aggregation elicited in experimental colitis are mediated by interleukin-6. Inflamm Bowel Dis 20:353–362. https://doi.org/10.1097/01.MIB.0000440614.83703.84

    Article  PubMed  Google Scholar 

  199. Rhaman MM, Islam MR, Akash S et al (2022) Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: at a glance. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2022.989471/PDF

    Article  PubMed  PubMed Central  Google Scholar 

  200. Guan Q, Zhang J (2017) Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. https://doi.org/10.1155/2017/4810258

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jovani M, Fiorino G, Danese S. Anti-IL-13 in inflammatory bowel disease: from the bench to the bedside

  202. McGeachy MJ, Bak-Jensen KS, Chen Y et al (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nat Immunol 812(8):1390–1397. https://doi.org/10.1038/ni1539

    Article  CAS  Google Scholar 

  203. Biancheri P, Giuffrida P, Docena GH et al (2014) The role of transforming growth factor (TGF)-β in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev 25:45–55. https://doi.org/10.1016/J.CYTOGFR.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  204. Lv H, Jiang Y, Li J et al (2014) Association between polymorphisms in the promoter region of interleukin-10 and susceptibility to inflammatory bowel disease. Mol Biol Reports 413(41):1299–1310. https://doi.org/10.1007/S11033-013-2975-7

    Article  Google Scholar 

  205. Zhu H, Li YR (2012) Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med 237:474–480. https://doi.org/10.1258/EBM.2011.011358

    Article  CAS  Google Scholar 

  206. Achitei D, Ciobica A, Balan G et al (2013) Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig Dis Sci 585(58):1244–1249. https://doi.org/10.1007/S10620-012-2510-Z

    Article  Google Scholar 

  207. Hatsugai M, Kurokawa MS, Kouro T et al (2009) Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J Gastroenterol 455(45):488–500. https://doi.org/10.1007/S00535-009-0183-Y

    Article  Google Scholar 

  208. Naito Y, Takagi T, Yoshikawa T (2007) Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol 42:787–798. https://doi.org/10.1007/S00535-007-2096-Y

    Article  CAS  PubMed  Google Scholar 

  209. Rath E, Haller D (2012) Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm Bowel Dis 18:1364–1377. https://doi.org/10.1002/IBD.21944

    Article  PubMed  Google Scholar 

  210. Martin-Subero M, Anderson G, Kanchanatawan B et al (2016) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut–brain pathways. CNS Spectr 21:184–198. https://doi.org/10.1017/S1092852915000449

    Article  PubMed  Google Scholar 

  211. Gîlcǎ-Blanariu GE, Diaconescu S, Ciocoiu M, Tefǎnescu G (2018) New insights into the role of trace elements in IBD. Biomed Res Int. https://doi.org/10.1155/2018/1813047

    Article  PubMed  PubMed Central  Google Scholar 

  212. Camarillo GF, Goyon EI, Zuñiga RB et al (2020) Gene expression profiling of mediators associated with the inflammatory pathways in the intestinal tissue from patients with ulcerative colitis. Mediators Inflamm. https://doi.org/10.1155/2020/9238970

    Article  PubMed  PubMed Central  Google Scholar 

  213. Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53:1748–1759. https://doi.org/10.1016/J.FREERADBIOMED.2012.08.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mohammadi E, Qujeq D, Taheri H, Hajian-Tilaki K (2017) Evaluation of serum trace element levels and superoxide dismutase activity in patients with inflammatory bowel disease: Translating basic research into clinical application. Biol Trace Elem Res 177(2):235–240. https://doi.org/10.1007/s12011-016-0891-0

    Article  PubMed  Google Scholar 

  215. Effects of zinc deficiency on immune functions—Prasad—2000—The Journal of Trace Elements in Experimental Medicine—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/. Accessed 14 Dec 2022

  216. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S-1456S. https://doi.org/10.1093/JN/133.5.1452S

    Article  CAS  PubMed  Google Scholar 

  217. Meunier N, O’Connor JM, Maiani G et al (2005) Importance of zinc in the elderly: the ZENITH study. Eur J Clin Nutr 592(59):S1–S4. https://doi.org/10.1038/sj.ejcn.1602286

    Article  CAS  Google Scholar 

  218. Malavolta M, Piacenza F, Basso A et al (2015) Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev 151:93–100. https://doi.org/10.1016/J.MAD.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  219. Ojuawo A, Keith L (2002) The serum concentrations of zinc, copper and selenium in children with inflammatory bowel disease

  220. Mihara M, Ohnishi A, Tomono Y et al (1993) Pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol 31:223–229

    CAS  PubMed  Google Scholar 

  221. Kruidenier L, Kuiper I, Lamers CBHW, Verspaget HW (2003) Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol 201:28–36. https://doi.org/10.1002/PATH.1409

    Article  CAS  PubMed  Google Scholar 

  222. Seguí J, Gironella M, Sans M et al (2004) Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. J Leukoc Biol 76:537–544. https://doi.org/10.1189/JLB.0304196

    Article  PubMed  Google Scholar 

  223. Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59:991–999. https://doi.org/10.1002/MNFR.201400761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Duan H, Lü S, Qin H et al (2017) Co-delivery of zinc and 5-aminosalicylic acid from alginate/N-succinyl-chitosan blend microspheres for synergistic therapy of colitis. Int J Pharm 516:214–224. https://doi.org/10.1016/J.IJPHARM.2016.11.036

    Article  CAS  PubMed  Google Scholar 

  225. Li J, Chen H, Wang B et al (2017) ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Reports 71(7):1–11. https://doi.org/10.1038/srep43126

    Article  CAS  Google Scholar 

  226. Vanda Papp L, Holmgren A, Kum Khanna K, et al (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. 9:775–806. https://doi.org/10.1089/ARS.2007.1528. https://home.liebertpub.com/ars

  227. Fairweather-Tait SJ, Bao Y, Broadley MR, et al (2011) Selenium in Human Health and Disease. 14:1337–1383. https://doi.org/10.1089/ARS.2010.3275. https://home.liebertpub.com/ars

  228. Short SP, Pilat JM, Williams CS (2018) Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med 127:26–35. https://doi.org/10.1016/J.FREERADBIOMED.2018.05.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Aguilar-Tablada TC, Navarro-Alarcón M, Granados JQ et al (2016) Ulcerative colitis and Crohn’s disease are associated with decreased serum selenium concentrations and increased cardiovascular risk. Nutrition 8:780. https://doi.org/10.3390/NU8120780

    Article  Google Scholar 

  230. Kudva AK, Shay AE, Prabhu KS (2015) Selenium and inflammatory bowel disease. Am J Physiol—Gastrointest Liver Physiol 309:G71–G77. https://doi.org/10.1152/AJPGI.00379.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Te Velde AA, Pronk I, De Kort F, Stokkers PCF (2008) Glutathione peroxidase 2 and aquaporin 8 as new markers for colonic inflammation in experimental colitis and inflammatory bowel diseases: an important role for H2O2? Eur J Gastroenterol Hepatol 20:555–560. https://doi.org/10.1097/MEG.0B013E3282F45751

    Article  Google Scholar 

  232. Florian S, Krehl S, Loewinger M, Kipp A, Banning A, Esworthy S, Chu FF, Brigelius-Flohé R (2010) Loss of GPx2 increases apoptosis, mitosis, and GPx1 expression in the intestine of mice. Free Radic Biol Med 49(11):1694–1702. https://doi.org/10.1016/j.freeradbiomed.2010.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Esworthy RS, Kim BW, Larson GP et al (2011) Colitis locus on chromosome 2 impacting the severity of early-onset disease in mice deficient in GPX1 and GPX2. Inflamm Bowel Dis 17:1373–1386. https://doi.org/10.1002/IBD.21479

    Article  PubMed  Google Scholar 

  234. Barrett CW, Ning W, Chen X et al (2013) Tumor suppressor function of the plasma glutathione peroxidase Gpx3 in colitis-associated carcinoma. Cancer Res 73:1245–1255. https://doi.org/10.1158/0008-5472.CAN-12-3150/650607/AM/TUMOR-SUPPRESSOR-FUNCTION-OF-THE-PLASMA

    Article  CAS  PubMed  Google Scholar 

  235. Speckmann B, Bidmon HJ, Pinto A et al (2011) Induction of glutathione peroxidase 4 expression during enterocytic cell differentiation. J Biol Chem 286:10764–10772. https://doi.org/10.1074/jbc.M110.216028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Andoh A, Hirashima M, Maeda H et al (2005) Serum selenoprotein-P levels in patients with inflammatory bowel disease. Nutrition 21:574–579. https://doi.org/10.1016/J.NUT.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  237. Speckmann B, Pinto A, Winter M et al (2010) Proinflammatory cytokines down-regulate intestinal selenoprotein P biosynthesis via NOS2 induction. Free Radic Biol Med 49:777–785. https://doi.org/10.1016/J.FREERADBIOMED.2010.05.035

    Article  CAS  PubMed  Google Scholar 

  238. Speckmann B, Gerloff K, Simms L et al (2014) Selenoprotein S is a marker but not a regulator of endoplasmic reticulum stress in intestinal epithelial cells. Free Radic Biol Med 67:265–277. https://doi.org/10.1016/J.FREERADBIOMED.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  239. Gandhi UH, Kaushal N, Ravindra KC et al (2011) Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D 2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR) γ. J Biol Chem 286:27471–27482. https://doi.org/10.1074/jbc.M111.260547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wiercinska-Drapalo A, Jaroszewicz J, Tarasow E et al (2005) Transforming growth factor beta(1) and prostaglandin E2 concentrations are associated with bone formation markers in ulcerative colitis patients. Prostaglandins Other Lipid Mediat 78:160–168. https://doi.org/10.1016/J.PROSTAGLANDINS.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  241. Hoffmann PR (2012) An emerging picture of the biological roles of selenoprotein K. Selenium Its Mol Biol Role Hum Heal 9781461410256:335–344. https://doi.org/10.1007/978-1-4614-1025-6_26/COVER

    Article  Google Scholar 

  242. Barrett CW, Reddy VK, Short SP et al (2015) Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest 125:2646–2660. https://doi.org/10.1172/JCI76099

    Article  PubMed  PubMed Central  Google Scholar 

  243. Barrett CW, Singh K, Motley AK et al (2013) Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM/DSS-induced tumorigenesis. PLoS ONE 8:e67845. https://doi.org/10.1371/JOURNAL.PONE.0067845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kaushal N, Kudva AK, Patterson AD et al (2014) Crucial role of macrophage selenoproteins in experimental colitis. J Immunol 193:3683–3692. https://doi.org/10.4049/JIMMUNOL.1400347

    Article  CAS  PubMed  Google Scholar 

  245. Nettleford SK, Prabhu KS (2018) Selenium and selenoproteins in gut inflammation—a review. Antioxidants 7:36. https://doi.org/10.3390/ANTIOX7030036

    Article  PubMed  PubMed Central  Google Scholar 

  246. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. https://doi.org/10.12703/P6-13

    Article  PubMed  PubMed Central  Google Scholar 

  247. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Nelson SM, Lei X, Prabhu KS (2011) Selenium levels affect the IL-4–induced expression of alternative activation markers in murine macrophages. J Nutr 141:1754–1761. https://doi.org/10.3945/JN.111.141176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Narayan V, Ravindra KC, Liao C et al (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26:138–145. https://doi.org/10.1016/J.JNUTBIO.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  250. Ravindra KC, Narayan V, Lushington GH et al (2012) Targeting of histone acetyltransferase p300 by cyclopentenone prostaglandin Δ 12-PGJ 2 through covalent binding to Cys 1438. Chem Res Toxicol 25:337–347. https://doi.org/10.1021/TX200383C/SUPPL_FILE/TX200383C_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  251. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120. https://doi.org/10.1016/J.TIBS.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Liu Y, Xu X, Xu R, Zhang S (2019) Renoprotective effects of isoliquiritin against cationic bovine serum albumin-induced membranous glomerulonephritis in experimental rat model through its anti-oxidative and anti-inflammatory properties. Drug Des Devel Ther 13:3735. https://doi.org/10.2147/DDDT.S213088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Misra S, Kwong RWM, Niyogi S (2012) Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout. J Exp Biol 215:1491–1501. https://doi.org/10.1242/JEB.062307

    Article  CAS  PubMed  Google Scholar 

  254. Newsroom | National Academies. https://www.nationalacademies.org/newsroom. Accessed 13 Dec 2022

  255. Chan S, Gerson B, Subramaniam S (1998) The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med 18:673–685. https://doi.org/10.1016/S0272-2712(18)30143-4

    Article  CAS  PubMed  Google Scholar 

  256. Turnlund JR, Keyes WR, Peiffer GL (1995) Molybdenum absorption, excretion, and retention studied with stable isotopes in young men at five intakes of dietary molybdenum. Am J Clin Nutr 62:790–796. https://doi.org/10.1093/AJCN/62.4.790

    Article  CAS  PubMed  Google Scholar 

  257. Ichida K, Amaya Y, Okamoto K, Nishino T (2012) Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 13:15475–15495. https://doi.org/10.3390/IJMS131115475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lee HH, Prasad AS, Brewer GJ, Owyang C (1989) Zinc absorption in human small intestine. Am J Physiol-Gastrointest Liver Physiol. https://doi.org/10.1152/AJPGI.1989.256.1.G87

    Article  Google Scholar 

  259. Turnlund JR, Durkin N, Costa F, Margen S (1986) Stable isotope studies of zinc absorption and retention in young and elderly men. J Nutr 116:1239–1247. https://doi.org/10.1093/JN/116.7.1239

    Article  CAS  PubMed  Google Scholar 

  260. Clearwater SJ, Baskin SJ, Wood CM, McDonald DG (2000) Gastrointestinal uptake and distribution of copper in rainbow trout. J Exp Biol 203:2455–2466. https://doi.org/10.1242/JEB.203.16.2455

    Article  CAS  PubMed  Google Scholar 

  261. (III) WF-T nutritional biochemistry of chromium, 2007 undefined the transport of chromium (III) in the body: Implications for function. books.google.com

  262. Lewander WJ, Lacouture PG, Silva JE, Lovejoy FH (1989) Acute thyroxine ingestion in pediatric patients. Pediatrics 84:262–265. https://doi.org/10.1542/PEDS.84.2.262

    Article  CAS  PubMed  Google Scholar 

  263. Kopp P (2010) Thyrotoxicosis of other Etiologies. Endotext

    Google Scholar 

Download references

Funding

No external funding.

Author information

Authors and Affiliations

Authors

Contributions

Study Design: MRI, SA and AR. Literature review & Drawing figures: MHJ, MN, FTN and MMR. Manuscript Preparation: MT. All authors read and approved the final MS.

Corresponding authors

Correspondence to Abdur Rauf or Muthu Thiruvengadam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Akash, S., Jony, M.H. et al. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem 478, 2141–2171 (2023). https://doi.org/10.1007/s11010-022-04638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04638-3

Keywords

Navigation