Abstract
In the paper, we are concerned with the existence and uniqueness of solution for tensor complementarity problem (TCP) and tensor absolute value equations (TAVEs) with special structure. First, we give a sufficient condition of P tensors by using the nonsingularity of the relevant tensors and the properties of eigenvalues. In addition, we give the conditions for the existence and uniqueness of solution for the TCP and prove that the TAVEs with a special structure are equivalent to the TCP. Based on these, using the equivalence relationship with the TCP, some sufficient conditions for the existence and uniqueness of solution for the TAVEs with special structure are given.
Similar content being viewed by others
References
Bai, X., Huang, Z., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
Bu, F., Ma, C.: The tensor splitting methods for solving tensor absolute value equation. Comput. Appl. Math. 39, 178 (2020)
Bu, C., Zhang, X., Zhou, J., Wang, W., Wei, Y.: The inverse, rank and product of tensors. Linear Algebra Appl. 446, 269–280 (2014)
Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45–58 (2015)
Che, M., Qi, L., Wei, Y.: Positive definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)
Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018)
Ding, W., Luo, Z., Qi, L.: \(P\)-tensors, \(P_0\)-tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)
Gowda, M., Luo, Z., Qi, L., Xiu, N.: \({\cal{Z}}\)-tensors and complementarity problems. arXiv:1510.07933v2 (2016)
Hu, S., Huang, Z., Zhang, Q.: A generalized Newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 235, 1490–1501 (2011)
Hu, S., Huang, Z., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J Symb. Comput. 50, 508–531 (2013)
Huang, Z., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)
Huang, Z., Qi, L.: Tensor complementarity problems—part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)
Huang, Z., Qi, L.: Tensor complementarity problems—part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)
Iqbal, J., Iqbal, A., Arif, M.: Levenberg–Marquardt method for solving systems of absolute value equations. J. Comput. Appl. Math. 282, 134–138 (2015)
Ke, R., Li, W., Ng, M.: Numerical ranges of tensor. Linear Algebra Appl. 508, 100–132 (2016)
Ling, C., He, H., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim. Appl. 63, 143–168 (2016)
Ling, C., He, H., Qi, L.: Higher-degree eigenvalue complementarity problems for tensors. Comput. Optim. Appl. 64, 149–176 (2016)
Ling, C., Yan, W., He, H., Qi, L.: Further study on tensor absolute value equations. Sci. China Math. 63, 2137–2156 (2020)
Liu, D., Li, W., Vong, S.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 66, 1726–1749 (2017)
Luo, Z., Qi, L., Xiu, X.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2015)
Mangasarian, O., Meyer, R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006)
Qi, L., Huang, Z.: Tensor complementarity problems—part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)
Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)
Rohn, J.: A theorem of the alternatives for the equation \(Ax + B|x| = b\). Linear Multilinear Algebra 52, 421–426 (2004)
Rohn, J.: An algorithm for solving the absolute value equations. Electron. J. Linear Algebra 18, 589–599 (2009)
Song, Y., Mei, W.: Structural properties of tensors and complementarity problems. J. Optim. Theory Appl. 176, 289–305 (2018)
Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)
Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)
Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11, 1407–1426 (2017)
Sun, M., Liu, J.: General six-step discrete-time Zhang neural network for time-varying tensor absolute value equations. Discrete Dyn. Nat. Soc. 2019, 1–12 (2019)
Salkuyeh, D.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8, 2191–2202 (2014)
Wang, X., Che, M., Wei, Y.: Neural network approach for solving nonsingular multi-linear tensor systems. J. Comput. Appl. Math. 368, 112569 (2020)
Wang, X., Che, M., Wei, Y.: Global uniqueness and solvability of tensor complementarity problems for \({\cal{H}}_{+}\)-tensors. Numer. Algorithms 84, 567–590 (2020)
Wang, Y., Huang, Z., Bai, X.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)
Wu, S., Guo, P.: On the unique solvability of the absolute value equation. J. Optim. Theory Appl. 169, 705–712 (2016)
Wu, S., Li, C.: The unique solution of the absolute value equations. Appl. Math. Lett. 76, 195–200 (2018)
Wu, S., Shen, S.: On the unique solution of the generalized absolute value equation. Optim. Lett. (2020). https://doi.org/10.1007/s11590-020-01672-2
Xu, Y., Gu, W., Huang, Z.: Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems. Front. Math. China 14, 661–671 (2019)
Zhang, C., Wei, Q.: Global and finite convergence of a generalized newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)
Acknowledgements
The authors are grateful to the handling Associate Editor and anonymous referees for useful comments and suggestions that contributed to improving the quality of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Liqun Qi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This document is the results of the research project funded by National Natural Science Foundations of China (Nos. 12171064, 11601134, 11961082, 17HASTIT012), Foundation of Henan Educational Committee (No. 21A110013), Foundation of Henan Normal University (No. 2021PL03).
Rights and permissions
About this article
Cite this article
Cui, LB., Fan, YD., Song, YS. et al. The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems. J Optim Theory Appl 192, 321–334 (2022). https://doi.org/10.1007/s10957-021-01972-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01972-2