Abstract
In a finite-dimensional Euclidean space, we study the convergence of a proximal point method to a solution of the inclusion induced by a maximal monotone operator, under the presence of computational errors. Most results known in the literature establish the convergence of proximal point methods, when computational errors are summable. In the present paper, the convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.
Similar content being viewed by others
References
Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)
Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: basic theory. SIAM J. Optim. 19, 766–785 (2008)
Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality. Comput. Appl. Math. 28, 15–36 (2009)
Butnariu, D., Kassay, G.: A proximal-projection method for finding zeros of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)
Censor, Y., Zenios, S.A.: The proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73, 451–464 (1992)
Guler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)
Hager, W.W., Zhang, H.: Asymptotic convergence analysis of a new class of proximal point methods. SIAM J. Control Optim. 46, 1683–1704 (2007)
Kaplan, A., Tichatschke, R.: Bregman-like functions and proximal methods for variational problems with nonlinear constraints. Optimization 56, 253–265 (2007)
Kassay, G.: The proximal points algorithm for reflexive Banach spaces. Stud. Univ. Babes-Bolyai Math. 30, 9–17 (1985)
Martinet, B.: Pertubation des methodes d’optimisation: application. RAIRO. Anal. Numér. 12, 153–171 (1978)
Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
Minty, G.J.: On the monotonicity of the gradient of a convex function. Pac. J. Math. 14, 243–247 (1964)
Moreau, J.J.: Proximite et dualite dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Solodov, M.V., Svaiter, B.F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. Program. 88, 371–389 (2000)
Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)
Xu, H.-K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)
Yamashita, N., Kanzow, C., Morimoto, T., Fukushima, M.: An infeasible interior proximal method for convex programming problems with linear constraints. J. Nonlinear Convex Anal. 2, 139–156 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V.F. Demyanov.
Rights and permissions
About this article
Cite this article
Zaslavski, A.J. Maximal Monotone Operators and the Proximal Point Algorithm in the Presence of Computational Errors. J Optim Theory Appl 150, 20–32 (2011). https://doi.org/10.1007/s10957-011-9820-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9820-8