Abstract
We determine the general structure of the partition function of the q-state Potts model in an external magnetic field, Z(G,q,v,w) for arbitrary q, temperature variable v, and magnetic field variable w, on cyclic, Möbius, and free strip graphs G of the square (sq), triangular (tri), and honeycomb (hc) lattices with width L y and arbitrarily great length L x . For the cyclic case we prove that the partition function has the form \(Z(\Lambda,L_{y}\times L_{x},q,v,w)=\sum_{d=0}^{L_{y}}\tilde{c}^{(d)}\mathrm{Tr}[(T_{Z,\Lambda,L_{y},d})^{m}]\) , where Λ denotes the lattice type, \(\tilde{c}^{(d)}\) are specified polynomials of degree d in q, \(T_{Z,\Lambda,L_{y},d}\) is the corresponding transfer matrix, and m=L x (L x /2) for Λ=sq,tri (hc), respectively. An analogous formula is given for Möbius strips, while only \(T_{Z,\Lambda,L_{y},d=0}\) appears for free strips. We exhibit a method for calculating \(T_{Z,\Lambda,L_{y},d}\) for arbitrary L y and give illustrative examples. Explicit results for arbitrary L y are presented for \(T_{Z,\Lambda,L_{y},d}\) with d=L y and d=L y −1. We find very simple formulas for the determinant \(\mathrm{det}(T_{Z,\Lambda,L_{y},d})\) . We also give results for self-dual cyclic strips of the square lattice.
Similar content being viewed by others
References
Potts, R.B.: Proc. Camb. Philos. Soc. 48, 106 (1952)
Wu, F.Y.: Rev. Mod. Phys. 54, 235 (1982)
Baxter, R.J.: Exactly Solved Models. Oxford University Press, London (1983)
Martin, P.: Potts Models and Related Problems in Statistical Mechanics. World Scientific, Singapore (1991)
Wu, F.Y.: Exactly Solved Models: A Journey in Statistical Mechanics. World Scientific, Singapore (2009)
Welsh, D.J.A.: Complexity: Knots, Colourings, and Counting. Cambridge University Press, Cambridge (1993)
Biggs, N., Chang, S.-C., Dong, F.M., Jackson, B., Jacobsen, J., Royle, G., Shrock, R., Sokal, A., Thomassen, C., et al.: In: Workshop on Zeros of Graph Polynomials, Newton Institute for Mathematical Sciences, Cambridge University (2008). http://www.newton.ac.uk/programmes/CSM/seminars
Beaudin, L., Ellis-Monaghan, J., Pangborn, G., Shrock, R.: Discrete Math. (in press). arXiv:0804.2468
Cardy, J.: In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 11, p. 55. Academic Press, San Diego (1987)
Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, New York (1997)
Fortuin, C.M., Kasteleyn, P.W.: Physica 57, 536 (1972)
Tutte, W.T.: Can. J. Math. 6, 301 (1954)
Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)
Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
Wu, F.Y.: J. Stat. Phys. 18, 115 (1978)
Kim, S.-Y., Creswick, R.J.: Phys. Rev. E 58, 7006 (1998)
Chang, S.-C., Shrock, R.: J. Phys. A 42, 385004 (2009)
Blöte, H.W.J., Nightingale, M.P.: Physica A 112, 405 (1982)
Saleur, H.: Nucl. Phys. B 360, 219 (1991)
Saleur, H.: Commun. Math. Phys. 132, 657 (1990)
Shrock, R.: Physica A 283, 388 (2000)
Salas, J., Sokal, A.: J. Stat. Phys. 104, 609 (2001)
Chang, S.-C., Shrock, R.: Physica A 296, 183 (2001)
Chang, S.-C., Shrock, R.: Physica A 296, 234 (2001)
Chang, S.-C., Shrock, R.: Physica A 286, 189 (2001)
Chang, S.-C., Shrock, R.: Int. J. Mod. Phys. B 15, 443 (2001)
Chang, S.-C., Salas, J., Shrock, R.: J. Stat. Phys. 107, 1207 (2002)
Chang, S.-C., Jacobsen, J., Salas, J., Shrock, R.: J. Stat. Phys. 114, 763 (2004)
Chang, S.-C., Shrock, R.: Physica A 347, 314 (2005)
Read, R.C., Tutte, W.T.: Chromatic polynomials. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, vol. 3, p. 15. Academic Press, San Diego (1988)
Chang, S.-C., Shrock, R.: Physica A 296, 131 (2001)
Chang, S.-C., Shrock, R.: Physica A 301, 301 (2001)
Chang, S.-C., Shrock, R.: Phys. Rev. E 64, 066116 (2001)
Bernstein, M., Sloane, N.J.A.: Linear Algebra Appl. 226, 57 (1995)
Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences
Chang, S.-C., Shrock, R.: Physica A 292, 307 (2001)
Biggs, N.L., Damerell, R.M., Sands, D.A.: J. Comb. Theory B 12, 123 (1972)
Shrock, R., Tsai, S.-H.: J. Phys. A 32, L195 (1999)
Shrock, R., Tsai, S.-H.: Phys. Rev. E 60, 3512 (1999)
Shrock, R.: Phys. Lett. A 261, 57 (1999)
Chang, S.-C., Shrock, R.: Physica A 346, 400 (2005)
Biggs, N., Shrock, R.: J. Phys. A 32, L489 (1999)
Glumac, Z., Uzelac, K.: J. Phys. A 27, 7709 (1994)
Mirza, B., Bakhtiari, M.R.: arXiv:cond-mat/0306007
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chang, SC., Shrock, R. Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips. J Stat Phys 137, 667–699 (2009). https://doi.org/10.1007/s10955-009-9868-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-009-9868-0