Abstract
The number of colourings of a graphG withQ or fewer colors is a polynomial inQ known as the chromatic polynomialP G (Q). It coïncides with the partition functionF G of theQ state Potts model onG at zero temperature and in the antiferromagnetic regimee K=0. In the planar case, the Beraha conjecture particularizes the numbers\(B_n = 4\cos ^2 \frac{\pi }{n}\) as possible accumulation points of real zeroes ofP G in the infinite graph limit. We suggest in this work an approach based on recent developments of quantum groups to handle this conjecture. For the square, triangular and honeycomb lattices and systems wrapped on a cylinderl×t, we first exhibit in the (Q, e K) Potts parameter space a critical line, whereF G(Q,e K) has real zeroes converging to and only to theB n 's asl, t→∞. The analysis is based on the vertex representation of theQ state Potts model, quantum algebraU qSl (2) properties forq a root of unity, and conformal invariance.U qSl (2) symmetry is present for anye K, including the chromatic polynomial casee K=0. Using an additional hypothesis on the eigenvalues structure and knowledge of the Potts parameter space, we then argue that forP G (Q), real zeros occur and converge toB n 's, 2≦n≦n 0 only, wheren 0 depends on the lattice. Extensions to other kinds of graphs and size dependence of the zeros are discussed. Finally physical applications are also mentioned.
Similar content being viewed by others
References
Saaty, T., Kainen, P.: The four color problem. New York: McGraw-Hill 1977 and references therein
Baxter, R.J.: Exactly solved models in statistical mechanics. New York: Academic Press 1982
Wu, F.Y.: Rev. Mod. Phys.54, 235 (1982)
Beraha, S.: Infinite non-trivial families of maps and chromials, thesis, John Hopkins University
Beraha, S., Kahane, J., Weiss, N.: In: Studies in foundations and combinatorics, Adv. Math. Suppl. Stud.1, 213 (1978)
Beraha, S., Kahane, J., Weiss, N.J.: J. Comb. Theory B28, 52 (1980)
Tutte, W.T.: J. Comb. Theory9, 289 (1970)
Tutte, W.T.: Can. J. Math.25, 426 (1973)
Hall, D.W., Siry, J.W., Vanderslice, B.R.: Proc. Am. Math. Soc.16, 620 (1965)
Biggs, N.L., Damerall, R.M., Sands, D.A.: J. Comb. Theory B12, 123 (1962)
Baxter, R.J.: J. Phys. A19, 2821 (1986); J. Phys. A20, 5241 (1987)
Jones, V.: Invent. Math.72, 1 (1983)
Friedan, D., Qiu, Z., Shenker, S.: Phys. Rev. Lett.52, 1575 (1984)
Andrews, G.E., Baxter, R.J., Forrester, P.J.: J. Stat. Phys.35, 193 (1983)
Pasquier, V.: Nucl. Phys. B295, 491 (1988)
Pasquier, V., Saleur, H.: Nucl. Phys. B330, 523 (1990)
Alvarez Gaumé, L., Gomez, C., Sierra, G.: Phys. Lett. B220, 142 (1989)
Gervais, J.L.: The quantum group structure of 2D gravity and minimal models. Preprint LPTENS 1989
Drinfeld, V.G.: Dokl. Akad. Nauk. SSSR283, 1060 (1985)
Jimbo, M.: Lett. Math. Phys.10, 63 (1985)
Drinfeld, V.G.: Proc. ICM (AMS Berkeley) 1978 and references therein
Baxter, R.J., Kelland, S.B., Wu, F.Y.: J. Phys. A9, 397 (1976)
di Francesco, P., Saleur, H., Zuber, J.B.: J. Stat. Phys.49, 57 (1987)
Bauer, M., Saleur, H.: Nucl. Phys.B320, 591 (1989)
Lusztig, G.: Modular representations and quantum groups. Preprint 1989
Roche, P., Arnaudon, D.: Lett. Math. Phys.17, 295 (1989)
Felder, G.: Nucl. Phys.B317, 215 (1989)
Sklyanin, E.K.: Boundary conditions for integrable quantum systems. Preprint 1986
Gaudin, M.: La fonction d'onde de Bethe. Paris: Masson 1983
de Vega, H., Woynarovich, F.: Nucl. Phys.B 251, 439 (1985)
Hamer, C.J., Quispel, G.R.W., Batchelor, M.T.: J. Phys. A20, 5677 (1987)
See Itzykson, C., Saleur, H., Zuber, J.B.: Conformal invariance and applications to statistical mechanics. Singapore: World Scientific 1988 and references therein
Kim, D., Pearce, P.A.: J. Phys. A20, L451 (1987)
Kim, D., Joseph, R.I.: J. Phys. C7, L167 (1974)
Baxter, R.J., Temperley, H.N.V., Ashley, S.E.: Proc. Roy. Soc. London A358, 535 (1978)
Andrews, G.E.: Theory of partitions. Reading, MA: Addison Wesley 1976
Baxter, R.J.: J. Stat. Phys.28, 1 (1982)
Baxter, R.J.: Proc. R. Soc. Lond. A383, 43 (1982)
Lieb, E.H., Wu, F.Y.: In: Phase transitions and critical phenomena. Vol. 1, Domb, C., Green, M.S. (eds.). London 1972
Pasquier, V.: Commun. Math. Phys.118, 355 (1988)
Zamolodchikov, A.B., Fateev, V.A.: Nucl. Phys. B240, 115 (1984)
Distler, J., Qiu, Z.: BRS cohomology and a Feigin Fuchs representation of parafermionic theories. Preprint 1989
Bazhanov, V.V., Reshetikhin, N.Yu.: Int. J. Mod. Phys. A4, 115 (1989)
Saleur, H.: Phys. Rev. B35, 3657 (1987)
Duplantier, B., David, F.: J. Stat. Phys.51, 327 (1988)
Author information
Authors and Affiliations
Additional information
Communicated by K. Gawedzki
Laboratoire de l'Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique
Rights and permissions
About this article
Cite this article
Saleur, H. Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups. Commun.Math. Phys. 132, 657–679 (1990). https://doi.org/10.1007/BF02156541
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02156541