[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An innovative Vieta–Fibonacci wavelet collocation method for the numerical solution of three-component Brusselator reaction diffusion system of fractional order

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The research article presents a novel approach for the numerical solution of three-component time fractional order Brusselator reaction-diffusion system using the innovative Vieta–Fibonacci wavelet and collocation method. The proposed method involves the derivation of operational matrices for both integer and fractional order derivatives, enable the accurate and efficient computation of the system. The existence, uniqueness of solution and Ulam–Hyers stability of the model are rigorously discussed. Furthermore, a comprehensive convergence analysis of the Vieta–Fibonacci wavelet method is presented, which demonstrates its effectiveness in approximating the fractional derivative of the Brusselator system. The numerical experiments showcase the superior performance of the method in terms of accuracy and computational efficiency. The application of the Vieta–Fibonacci wavelet method to the three-component fractional order Brusselator reaction-diffusion system marks a significant advancement in the field of computational mathematics. The successful implementation of the Vieta–Fibonacci wavelet method signifies a significant advancement in solving fractional-order reaction-diffusion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Elsevier, New York, 1998)

  2. F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    Article  Google Scholar 

  3. K.-L. Wang, New analysis methods for the coupled fractional nonlinear Hirota equation. Fractals 31(09), 1–14 (2023)

    Article  CAS  Google Scholar 

  4. K.L. Wang, Novel approaches to fractional Klein–Gordon–Zakharov equation. Fractals 31(07), 2350095 (2023)

    Article  Google Scholar 

  5. K.-L. Wang, Novel perspective to the fractional Schrödinger equation arising in optical fibers. Fractals 32, 2450034 (2024)

    Article  Google Scholar 

  6. K.-L. Wang, New promising and challenges of the fractional Calogero–Bogoyavlenskii–Schiff equation. Fractals 31(09), 1–11 (2023)

    Article  CAS  Google Scholar 

  7. M. Giona, H.E. Roman, Fractional diffusion equation for transport phenomena in random media. Physica A 185(1–4), 87–97 (1992)

    Article  Google Scholar 

  8. R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  CAS  Google Scholar 

  9. X.-J. Yang, J.T. Machado, C. Cattani, F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)

    Article  Google Scholar 

  10. S. Das, P. Gupta, A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 277(1), 1–6 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Li, K. Shah, Numerical solutions of coupled systems of fractional order partial differential equations. Adv. Math. Phys. 2017, 1535826 (2017)

    Article  Google Scholar 

  12. W. Beghami, B. Maayah, S. Bushnaq, O. Abu Arqub, The Laplace optimized decomposition method for solving systems of partial differential equations of fractional order. Int. J. Appl. Comput. Math. 8(2), 52 (2022)

    Article  Google Scholar 

  13. M.I. Liaqat, A. Khan, A. Akgül, Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations. Chaos Solitons Fractals 157, 111984 (2022)

    Article  Google Scholar 

  14. C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  Google Scholar 

  15. A. Bhrawy, M. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)

    Article  Google Scholar 

  16. A.H. Bhrawy, E.H. Doha, D. Baleanu, S.S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  Google Scholar 

  17. A.I. Ali, M. Kalim, A. Khan, Solution of fractional partial differential equations using fractional power series method. Int. J. Differ. Equ. 2021, 1–17 (2021)

    Google Scholar 

  18. J. Fang, M. Nadeem, M. Habib, A. Akgül, Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance. Symmetry 14(6), 1179 (2022)

    Article  Google Scholar 

  19. S. Das, Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57(3), 483–487 (2009)

    Article  Google Scholar 

  20. H. Hassani, J.T. Machado, E. Naraghirad, B. Sadeghi, Solving nonlinear systems of fractional-order partial differential equations using an optimization technique based on generalized polynomials. Comput. Appl. Math. 39, 1–19 (2020)

    Article  Google Scholar 

  21. Y. Talaei, P.M. Lima, An efficient spectral method for solving third-kind Volterra integral equations with non-smooth solutions. Comput. Appl. Math. 42(4), 190 (2023)

    Article  Google Scholar 

  22. M. Alsuyuti, E. Doha, B. Bayoumi, S. Ezz-Eldien, Robust spectral treatment for time-fractional delay partial differential equations. Comput. Appl. Math. 42(4), 159 (2023)

    Article  Google Scholar 

  23. A. Nazimuddin, M.H. Kabir, M.O. Gani, Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions. Math. Comput. Simul. 203, 577–591 (2023)

    Article  Google Scholar 

  24. B. Yuttanan, M. Razzaghi, T.N. Vo, A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations. Appl. Numer. Math. 160, 349–367 (2021)

    Article  Google Scholar 

  25. T. Abdeljawad, R. Amin, K. Shah, Q. Al-Mdallal, F. Jarad, Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex. Eng. J. 59(4), 2391–2400 (2020)

    Article  Google Scholar 

  26. M. Faheem, A. Khan, A. Raza, A high resolution Hermite wavelet technique for solving space–time–fractional partial differential equations. Math. Comput. Simul. 194, 588–609 (2022)

    Article  Google Scholar 

  27. E. Bargamadi, L. Torkzadeh, K. Nouri, A. Jajarmi, Solving a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels via the second Chebyshev wavelets method. Fractal Fract. 5(3), 70 (2021)

    Article  Google Scholar 

  28. S. Sabermahani, Y. Ordokhani, S.-A. Yousefi, Two-dimensional Müntz–Legendre hybrid functions: theory and applications for solving fractional-order partial differential equations. Comput. Appl. Math. 39(2), 111 (2020)

    Article  Google Scholar 

  29. J.H. Alkhalissi, I. Emiroglu, M. Bayram, A. Secer, F. Tasci, Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations. Eng. Comput. 39(2), 1363–1374 (2023)

    Article  Google Scholar 

  30. M. Heydari, M. Hooshmandasl, F.M. Ghaini, F. Fereidouni, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng. Anal. Boundary Elem. 37(11), 1331–1338 (2013)

    Article  Google Scholar 

  31. E. Keshavarz, Y. Ordokhani, M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)

    Article  Google Scholar 

  32. P. Agarwal, A. El-Sayed, J. Tariboon, Vieta-Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations. J. Comput. Appl. Math. 382, 113063 (2021)

    Article  Google Scholar 

  33. M. Heydari, Z. Avazzadeh, A. Atangana, Shifted Vieta–Fibonacci polynomials for the fractal-fractional fifth-order KdV equation. Math. Methods Appl. Sci. 44(8), 6716–6730 (2021)

    Article  Google Scholar 

  34. H. Azin, M.H. Heydari, F. Mohammadi, Vieta–Fibonacci wavelets: application in solving fractional pantograph equations. Math. Methods Appl. Sci. 45(1), 411–422 (2022)

    Article  Google Scholar 

  35. M.A. Khatun, M.A. Arefin, M.A. Akbar, M.H. Uddin, Existence and uniqueness solution analysis of time-fractional unstable nonlinear Schrödinger equation. Results Phys. 57, 107363 (2024)

    Article  Google Scholar 

  36. M. Derakhshan, Existence, uniqueness, Ulam-Hyers stability and numerical simulation of solutions for variable order fractional differential equations in fluid mechanics. J. Appl. Math. Comput. 68(1), 403–429 (2022)

    Article  Google Scholar 

  37. R. Almeida, A Gronwall inequality for a general Caputo fractional operator. arXiv preprint (2017). arXiv:1705.10079

  38. J. Zhang, X. Yang, A class of efficient difference method for time fractional reaction-diffusion equation. Comput. Appl. Math. 37(4), 4376–4396 (2018)

    Article  Google Scholar 

  39. X. Yang, L. Wu, An efficient parallel approximate algorithm for solving time fractional reaction-diffusion equations. Math. Probl. Eng. 2020, 1–17 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are extending their heartfelt thanks to the reviewers for their positive suggestions to improve the quality of the revised article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpal Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Das, S. & Rajeev An innovative Vieta–Fibonacci wavelet collocation method for the numerical solution of three-component Brusselator reaction diffusion system of fractional order. J Math Chem 62, 1558–1594 (2024). https://doi.org/10.1007/s10910-024-01621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-024-01621-9

Keywords

Navigation