[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Existence, uniqueness, Ulam–Hyers stability and numerical simulation of solutions for variable order fractional differential equations in fluid mechanics

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a numerical approximation is shown to solve solutions of time fractional linear differential equations of variable order in fluid mechanics where the considered fractional derivatives of variable order are in the Caputo sense. Existence, uniqueness of solutions and Ulam–Hyers stability results are displayed. To solve the considered equations a numerical approximation based on the shifted Legendre polynomials are proposed. To perform the method, an operational matrix of fractional derivative with variable-order is derived for the shifted Legendre polynomials to be applied for developing the unknown function. By substituting the aforesaid operational matrix into the considered equations and using the properties of the shifted Legendre polynomials together with the collocation points, the main equations are reduced to a system of algebraic equations. The approximate solution is calculated by solving the obtained system which is technically easier for checking. We also study the error analysis for the approximate solution yielded by the introduced method. Finally, the accuracy and performance of the proposed method are checked by some illustrative examples. The illustrative examples results establish the applicability and usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Almeida, R., Tavares, D., Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. Springer (2019)

  2. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory. J Phys A Math Gen 37(4), 1241–1250 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press (2018)

  4. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023–1052 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 1–9 (2016)

  6. Cao, J., Qiu, Y.: A high order numerical scheme for variable order fractional ordinary differential equation. Appl. Math. Lett. 61, 88–94 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Liu, L., Li, B., Sun, Y.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Cooper, G., Cowan, D.: Filtering using variable order vertical derivatives. Comput. Geosci. 30(5), 455–459 (2004)

    Google Scholar 

  10. Coronel-Escamilla, A., Gómez-Aguilar, J.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Physica A Stat. Mech. Appl. 491, 406–424 (2018)

    MathSciNet  Google Scholar 

  11. Dwivedi, K.D., Das, S., Gómez-Aguilar, J.F.: Finite difference/collocation method to solve multi term variable-order fractional reaction-advection-diffusion equation in heterogeneous medium. Numer. Methods Partial Differ. Equ. (2020)

  12. Deng, W., Du, S., Wu, Y.: High order finite difference weno schemes for fractional differential equations. Appl. Math. Lett. 26(3), 362–366 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Fang, Z.W., Sun, H.W., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80(5), 1443–1458 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Gómez-Aguilar, J.F., Miranda-Hernández, M., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D.: Modeling and simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 115–127 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Gómez-Aguilar, J.F., Córdova-Fraga, T.: Nonlocal transport processes and the fractional Cattaneo-Vernotte equation. Math. Probl. Eng. 2016 (2016)

  16. Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Physica A Stat. Mech. Appl. 494, 52–75 (2018)

    MathSciNet  Google Scholar 

  17. Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Ganji, R.M., Jafari, H., Nemati, S.: A new approach for solving integro-differential equations of variable order. J. Comput. Appl. Math. 379, 112946 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Gepreel, K.A., Omran, S., Elagan, S.K.: The traveling wave solutions for some nonlinear PDEs in mathematical physics. Appl. Math. 2(3), 343–347 (2011)

    MathSciNet  Google Scholar 

  20. Hashemi, M.S., Inc, M., Yusuf, A.: On three-dimensional variable order time fractional chaotic system with nonsingular kernel, Chaos. Solit. Fract. 133, 109628 (2020)

    Google Scholar 

  21. Heydari, M.H., Avazzadeh, Z., Haromi, M.F.: A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl. Math. Comput. 341, 215–228 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Heydari, M.H., Avazzadeh, Z.: Legendre wavelets optimization method for variable-order fractional poisson equation. Chaos Solitons Fractals. 112, 180–190 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Hosseininia, M., Heydari, M.H., Ghaini, F.M.M., Avazzadeh, Z.: Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients. Int. J. Nonlinear Sci. Numer. Simul (2018)

  24. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119–133 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Jafari, H., Tajadodi, H., Ganji, R.M.: A numerical approach for solving variable order differential equations based on bernstein polynomials. Comput. Math. Methods 1(5), e1055 (2019)

    MathSciNet  Google Scholar 

  26. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272–2294 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Khan, A., Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 127, 422–427 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Kumar, S., Pandey, P., Gómez-Aguilar, J.F., Baleanu, D.: Double-Quasi wavelet numerical method for the variable-order time fractional and Riesz space fractional reaction-diffusion equation involving derivatives in Caputo-Fabrizio sense. Fractals (2020)

  30. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley (1989)

  31. Kadkhoda, N.: A numerical approach for solving variable order differential equations using Bernstein polynomials. Alex. Eng. J. (2020) (in Press)

  32. Li, X., Li, H., Wu, B.: A new numerical method for variable order fractional functional differential equations. Appl. Math. Lett. 68, 80–86 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a newe xplicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Li, C., Zhang, F.: Fractional-order system identification based on continuous order-distributions. Signal Process 83, 2287–2300 (2003)

    Google Scholar 

  35. Lan, K., Lin, W.: Positive solutions of systems of Caputo fractional differential equations. Commun. Appl. Anal. 17, 61–86 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Liang, H., Stynes, M.: Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 76, 390–425 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Liang, H., Stynes, M.: Collocation methods for general Riemann-Liouville two-point boundary value problems. Adv. Comput. Math. (2018). https://doi.org/10.1007/s10444-018-9645-1

    Article  MATH  Google Scholar 

  39. Moghaddam, B.P., Machado, J.A.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71, 1351–1374 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  42. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional Variational Calculus of Variable Order. In: Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, vol. 229, pp. 291–301. Birkhauser/Springer Basel AG, Basel (2013)

  43. Pandey, P., Kumar, S., Gómez-Aguilar, J.F., Baleanu, D.: An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media. Chin. J. Phys. (2020)

  44. Podlubny, I.: Fractional Differential Equations. Acad Press, San Diego (1999)

    MATH  Google Scholar 

  45. Rawashdeh, M.: Using the reduced differential transform method to solve nonlinear PDEs arises in biology and physics. World Appl. Sci. J. 23(8), 1037–1043 (2013)

    Google Scholar 

  46. Soradi-Zeid, S., Jahanshahi, H., Yousefpour, A.: King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. Chaos Solitons Fractals 132, 109569 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993)

    MathSciNet  MATH  Google Scholar 

  49. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    MATH  Google Scholar 

  50. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Saadatmandi, A.: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Model. 38(4), 1365–1372 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Sun, H.G., Chen, W., Li, C.P., Chen, Y.Q.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos 22(04), 1250085 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Tavares, D., Almeida, R., Torres, D.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear. Sci. Numer. Simul. 35, 69–87 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Tayebi, A., Shekari, Y., Heydari, M.H.: A Meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76, 166–188 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Yang, X.J.: New general calculi with respect to another functions applied to describe the newton-like dashpot models in anomalous viscoelasticity. Therm. Sci. 23(6B), 3751–3757 (2019)

    Google Scholar 

  58. Yang, X.J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)

    MATH  Google Scholar 

  59. Yan, R., Han, M., Ma, Q., Ding, X.: A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative. Comput. Appl. Math. 38(2) (2019)

  60. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, 2710–2732 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, S.: The uniqueness result of solutions to initial value problems of differential equations of variable-order. RACSAM 112, 407–423 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Derakhshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshan, M.H. Existence, uniqueness, Ulam–Hyers stability and numerical simulation of solutions for variable order fractional differential equations in fluid mechanics. J. Appl. Math. Comput. 68, 403–429 (2022). https://doi.org/10.1007/s12190-021-01537-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01537-6

Keywords

Mathematics Subject Classification

Navigation