[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Extension of the Morley Element on General Polytopal Partitions Using Weak Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper introduces an extension of the well-known Morley element for the biharmonic equation, extending its application from triangular elements to general polytopal elements using the weak Galerkin finite element methods. By leveraging the Schur complement of the weak Galerkin method, this extension not only preserves the same degrees of freedom as the Morley element on triangular elements but also expands its applicability to general polytopal elements. The numerical scheme is devised by locally constructing weak tangential derivatives and weak second-order partial derivatives. Error estimates for the numerical approximation are established in both the energy norm and the \(L^2\) norm. A series of numerical experiments are conducted to validate the theoretical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility

Data will be made available upon request.

References

  1. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Model. Methods. Appl. Sci. 28(2), 387–407 (2018)

    Article  MathSciNet  Google Scholar 

  2. Burkardt, J., Gunzburger, M., Zhao, W.: High-precision computation of the weak Galerkin methods for the fourth-order problem. Numer. Algor. 84, 181–205 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chen, L., Huang, X.: Nonconforming virtual element method for \(2m\)th order partial differential equations in \(\mathbb{R} ^n\). Math. Comput. 89(324), 1711–1744 (2020)

    Article  Google Scholar 

  4. Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59, 496–511 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141–187 (2009)

    Article  MathSciNet  Google Scholar 

  6. Hansbo, P., Larson, M.G.: A discontinuous Galerkin method for the plate equation. Calcolo. 39, 41–59 (2002)

    Article  MathSciNet  Google Scholar 

  7. Morley, L.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19(2), 149–169 (1968)

    Article  Google Scholar 

  8. Mu, L., Wang, J., Ye, X.: Effective implementation of the weak Galerkin finite element methods for the biharmonic equation. Comput. Math. Appl. 74, 1215–1222 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^{0}\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59, 473–495 (2014)

    Article  MathSciNet  Google Scholar 

  10. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Differ. Equ. 30(3), 1003–1029 (2014)

    Article  MathSciNet  Google Scholar 

  11. Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)

    Article  MathSciNet  Google Scholar 

  12. Mozolevski, I., Süli, E., Bösing, P.R.: Hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465–491 (2007)

    Article  MathSciNet  Google Scholar 

  13. Park, C., Sheen, D.: A quadrilateral Morley element for biharmonic equations. Numer. Math. 124, 395–413 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ruas, V.: A quadratic finite element method for solving biharmonic problems in \(\mathbb{R} ^n\). Numer. Math. 52, 33–43 (1988)

    Article  MathSciNet  Google Scholar 

  15. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45, 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)

    Article  MathSciNet  Google Scholar 

  17. Wang, M., Shi, Z., Xu, J.: Some n-rectangle nonforming elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)

    MathSciNet  Google Scholar 

  18. Wang, M., Xu, J.: Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comput. 76(257), 1–18 (2007)

    Article  MathSciNet  Google Scholar 

  19. Wang, M., Xu, J., Hu, Y.: Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24(2), 113–120 (2006)

    MathSciNet  Google Scholar 

  20. Wang, C., Wang, J., Ye, X., Zhang, S.: De Rham complexes for weak Galerkin finite element spaces. J. Comput. Appl. Math. 397, 113645 (2021)

    Article  MathSciNet  Google Scholar 

  21. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68, 2314–2330 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, C., Wang, J.: A hybridized weak Galerkin finite element method for the biharmonic equation. Int. J. Numer. Anal. Model. 12(2), 302–317 (2015)

    MathSciNet  Google Scholar 

  24. Wang, C., Wang, J.: A primal-dual weak Galerkin finite element method for Fokker-Planck type equations. SIAM J. Numer. Anal. 58(5), 2632–2661 (2020)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  26. Ye, X., Zhang, S.: A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes. SIAM J. Numer. Anal. 58(5), 2572–2588 (2020)

    Article  MathSciNet  Google Scholar 

  27. Ye, X., Zhang, S.: A conforming DG method for the biharmonic equation on polytopal meshes. Int. J. Numer. Anal. Model. 20(6), 855–869 (2023)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76, 610–629 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Model. Methods. Appl. Sci. 26(9), 1671–1687 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Dan Li was supported by Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2023ZB271), China Postdoctoral Science Foundation (Grant No. 2023M741763), Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230311), National Natural Science Foundation of China (Grants No. 12071227 and No. 12371369), and National Key Research and Development Program of China (Grant No. 2020YFA0713803).

The research of Chunmei Wang was partially supported by National Science Foundation Grant DMS-2136380.

The research of Junping Wang was supported by the NSF IR/D program, while working at National Science Foundation. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, C. & Wang, J. An Extension of the Morley Element on General Polytopal Partitions Using Weak Galerkin Methods. J Sci Comput 100, 27 (2024). https://doi.org/10.1007/s10915-024-02580-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02580-8

Keywords

Mathematics Subject Classification

Navigation