[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

A modified weak Galerkin (MWG) finite element method is developed for solving the biharmonic equation. This method uses the same finite element space as that of the discontinuous Galerkin method, the space of discontinuous polynomials on polytopal meshes. But its formulation is simple, symmetric, positive definite, and parameter independent, without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method. Optimal order error estimates in a discrete \(H^2\) norm are established for the corresponding finite element solutions. Error estimates in the \(L^2\) norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements. The numerical results are presented to confirm the theory of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dong, Z.: Discontinuous Galerkin methods for the biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Model. 16, 825–845 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Georgoulis, E., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, 573–594 (2009)

    Article  MathSciNet  Google Scholar 

  3. Georgoulis, E., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)

    Article  MathSciNet  Google Scholar 

  4. Hu, J., Huang, Y., Zhang, S.: The lowest order differentiable finite element on rectangular grids. SIAM Numer. Anal. 49(4), 1350–1368 (2011)

    Article  MathSciNet  Google Scholar 

  5. Hu, J., Zhang, S.: The minimal conforming \(H^k\) finite element spaces on \({\mathbb {R}}^n\) rectangular grids. Math. Comput. 84(292), 563–579 (2015)

    Article  Google Scholar 

  6. Mozolevski, I., Suli, E., Bosing, P.: hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)

    Article  MathSciNet  Google Scholar 

  7. Mozolevski, I., Suli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, 596–607 (2003)

    Article  MathSciNet  Google Scholar 

  8. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method for biharmonic equations on polytopal meshes. Numer. Methods PDE 30, 1003–1029 (2014)

    Article  MathSciNet  Google Scholar 

  9. Mu, L., Wang, X., Ye, X.: A modified weak Galerkin finite element method for the Stokes equations. J. Comput. Appl. Math. 275, 79–90 (2015)

    Article  MathSciNet  Google Scholar 

  10. Suli, E., Mozolevski, I.: hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, 1851–1863 (2007)

    Article  Google Scholar 

  11. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  12. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., Malluwawadu, N., Gao, F., McMillan, T.: A modified weak Galerkin finite element method. J. Comput. Appl. Math. 217, 319–327 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method. Int. J. Numer. Anal. Model. 17(1), 110–117 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method: part II. Int. J. Numer. Anal. Model. 17(2), 281–296 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Ye, X., Zhang, S.: A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes. J. Comput. Appl. Math. 371, 112699 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zhang, S.: A C1-P2 finite element without nodal basis. ESAIM: M2AN 42, 175–192 (2008)

    Article  Google Scholar 

  18. Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zhang, S.: A family of differentiable finite elements on simplicial grids in four space dimensions. Math. Numer. Sin. 38(3), 309–324 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyou Zhang.

Additional information

M. Cui was supported in part by the National Natural Science Foundation of China (Grant No. 11571026) and the Beijing Municipal Natural Science Foundation of China (Grant No. 1192003). Xiu Ye was supported in part by the National Science Foundation Grant DMS-1620016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Ye, X. & Zhang, S. A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes. Commun. Appl. Math. Comput. 3, 91–105 (2021). https://doi.org/10.1007/s42967-020-00071-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00071-9

Keywords

Mathematics Subject Classification

Navigation