[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Convergent Iterated Quasi-interpolation for Periodic Domain and Its Applications to Surface PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper first provides an iterated quasi-interpolation scheme for function approximation over periodic domain and then attempts its applications to solve time-dependent surface partial differential equations (PDEs). The key feature of our scheme is that it gives an approximation directly just by taking a weighted average of the available discrete function values evaluated at sampling centers in the periodic domain. As such, it is simple, easy to compute, and the implementation process is stable. Moreover, if the sampling centers distribute uniformly over the periodic domain, it even preserves the same convergence order to all the derivatives. To employ the iterated quasi-interpolation scheme for solving time-dependent surface PDEs, we follow the framework of the method-of-lines. More precisely, we first reformulate the PDEs in terms of the parametric form of the surface. Then we use our quasi-interpolation scheme to approximate both the analytic solution and its spatial derivatives in the reformulated form (of PDEs) to get a semi-discrete ordinary differential equation (ODE) system. Finally, we adopt an appropriate time-integration technique to obtain the full-discrete scheme. As concrete examples, we take the torus for illustration and solve some benchmark reaction-diffusion equations imposed on the torus at the end of the paper. However, the proposed method is general and works on time-dependent PDEs defined on any smooth closed parameterized surfaces without coordinate singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

Enquiries about data availability should be directed to the authors.

References

  1. Adcock, B., Bao, A.Y., Brugiapaglia, S.: Correcting for unknown errors in sparse high-dimensional function approximation. Numer. Math. 142(3), 667–711 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, B.J.C., Hubbert, S.: Radial basis functions for the sphere. In: Recent progress in multivariate approximation, pp. 33–47. Springer, Berlin (2001)

  5. Beatson, R.K., Powell, M.J.D.: Univariate multiquadric approximation: quasi-interpolation to scattered data. Constr. Approx. 8(3), 275–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buhmann, M.D.: Convergence of univariate quasi-interpolation using multiquadrics. IMA J. Numer. Anal. 8(3), 365–383 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Hansbo, P., Larson, M.G., Massing, A., Zahedi, S.: Full gradient stabilized cut finite element methods for surface partial differential equations. Comput. Methods Appl. Mech. Eng. 310, 278–296 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calhoun, D.A., Helzel, C.: A finite volume method for solving parabolic equations on logically cartesian curved surface meshes. SIAM J. Sci. Comput. 31(6), 4066–4099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, M., Ling, L.: Kernel-based meshless collocation methods for solving coupled bulk-surface partial differential equations. J. Sci. Comput. 81(1), 375–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, M., Ling, L.: Extrinsic meshless collocation methods for PDEs on manifolds. SIAM J. Num. Anal. 58(2), 988–1007 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, M., Ling, L.: Kernel-based collocation methods for heat transport on evolving surfaces. J. Comput. Phys. 405, 109166 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheney, E.W., Light, W.A.: A Course in Approximation Theory, vol. 101. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  14. Cheung, K.C., Ling, L.: A kernel-based embedding method and convergence analysis for surfaces PDEs. SIAM J. Sci. Comput. 40(1), A266–A287 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Choi, Y., Jeong, D., Lee, S., Yoo, M., Kim, J.: Motion by mean curvature of curves on surfaces using the Allen–Cahn equation. Int. J. Eng. Sci. 97, 126–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chui, C.K., Diamond, H.: A natural formulation of quasi-interpolation by multivariate splines. Proc. Am. Math. Soc. 99, 643–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, A., DeVore, R.: High dimensional approximation of parametric PDEs. Acta Numer. 24, 1–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Costantini, P., Manni, C., Pelosi, F., Sampoli, M.L.: Quasi-interpolation in isogeometric analysis based on generalized B-splines. Comput. Aided Geom. Des. 27(8), 656–668 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Boor, C., Fix, G.J.: Spline approximation by quasi-interpolants. J. Approx. Theory 8(1), 19–45 (1973)

    Article  MATH  Google Scholar 

  20. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial differential equations and calculus of variations, pp 142–155. Springer, Berlin (1988)

  21. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuselier, E.J., Wright, G.B.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41(1), 23–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, W.W., Fasshauer, G.E., Sun, X.P., Zhou, X.: Optimality and regularization properties of quasi-interpolation: deterministic and stochastic approaches. SIAM J. Numer. Anal. 58(4), 2059–2078 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, W.W., Wu, Z.M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl. Math. 271, 20–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, W.W., Wu, Z.M.: Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant. Comput. Math. Appl. 69(7), 696–707 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29(3), 321–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Pardo, L., Pinkus, A., Suli, E., Todd, M. (eds.) Foundations of Computational Mathematics, LMS 331. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  29. Haußer, F., Voigt, A.: A discrete scheme for parametric anisotropic surface diffusion. J. Sci. Comput. 30(2), 223–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, J., Lee, S., Choi, Y.: A conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, D., Xu, G.L., Zhang, Q.: A discrete scheme of Laplace–Beltrami operator and its convergence over quadrilateral meshes. Comput. Math. Appl. 55(6), 1081–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lyche, T., Schumaker, L.L., Stanley, S.: Quasi-interpolants based on trigonometric splines. J. Approx. Theory 95(2), 280–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lyche, T., Winther, R.: A stable recurrence relation for trigonometric B-splines. J. Approx. Theory 25(3), 266–279 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, L.M., Wu, Z.M.: Approximation to the \(k\)-th derivatives by multiquadric quasi-interpolation method. J. Comput. Appl. Math. 231(2), 925–932 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Macdonald, C.B., Ruuth, S.J.: Level set equations on surfaces via the closest point method. J. Sci. Comput. 35(2), 219–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26(1), 283–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mohammadi, V., Mirzaei, D., Dehghan, M.: Numerical simulation and error estimation of the time-dependent Allen–Cahn equation on surfaces with radial basis functions. J. Sci. Comput. 79(1), 493–516 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Narcowich, F.J., Sun, X.P., Ward, J.D.: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27(1), 107–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nasdala, R., Potts, D.: Efficient multivariate approximation on the cube. Numer. Math. 147(2), 393–429 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Petras, A., Ling, L., Piret, C., Ruuth, S.J.: A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces. J. Comput. Phys. 381, 146–161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231(14), 4662–4675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Potts, D., Schmischke, M.: Approximation of high-dimensional periodic functions with Fourier-based methods. SIAM J. Numer. Anal. 59(5), 2393–2429 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shelley, M.J., Baker, G.R.: Order-preserving approximations to successive derivatives of periodic functions by iterated splines. SIAM J. Numer. Anal. 25(6), 1442–1452 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shu, C.W., Stanley, O.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132(1), 155–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, Z.J., Wu, Z.M., Gao, W.W.: An iterated quasi-interpolation approach for derivative approximation. Numer. Algorithms 85(1), 255–276 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wendland, H.: Scattered data approximation, vol. 17. Cambridge university Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  48. Wu, Z.M., Schaback, R.: Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math. Appl. Sin. 10, 441–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 12101310, 11871074, 11501006, 61672032), National Natural Science Foundation of China Key Project (Grant No. 11631015), Natural Science Foundation of Jiangsu Province (Grant No. BK20210315), 2021 Jiangsu Shuangchuang Talent Program (JSSCBS 20210222).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Yang.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The datasets and algorithms generated during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Fourier Coefficients of Multiquadrics

Appendix A: Fourier Coefficients of Multiquadrics

For \(\kappa (r)=(a^2+r^2)^{\lambda }\) with \(\lambda >0\), the Fourier coefficient of \(\phi \) is given by

$$\begin{aligned} {\widehat{\phi }}(\ell )=\mathcal {A}_{\lambda ,\ell ,d}\cdot F\left( \ell -\lambda ,\ell +\frac{d-1}{2};2l+d-1;\frac{4}{4+a^2}\right) , \end{aligned}$$
(A.1)

where

$$\begin{aligned} \mathcal {A}_{\lambda ,\ell ,d}=\frac{(-1)^{\ell }\pi ^{\frac{d-1}{2}}2^{2l+d-1}}{(4+c^2)^{\ell -\lambda }}\frac{\Gamma (\lambda +1)}{\Gamma (\lambda -\ell +1)}\frac{\Gamma (\ell +\frac{d-1}{2})}{\Gamma (2l+d-1)}, \end{aligned}$$

and F(abcz) is the Gauss hypergeometric series defined by

$$\begin{aligned} F(a,b,c;z)=\frac{\Gamma (c)}{\Gamma (a)\Gamma (b)}\sum _{n=0}^{\infty }\frac{\Gamma (a+n)\Gamma (b+n)}{\Gamma (c+n)}\frac{z^n}{n!}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Gao, W. & Yang, R. A Convergent Iterated Quasi-interpolation for Periodic Domain and Its Applications to Surface PDEs. J Sci Comput 93, 37 (2022). https://doi.org/10.1007/s10915-022-01998-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01998-2

Keywords

Mathematics Subject Classification

Navigation