[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Numerical Simulation and Error Estimation of the Time-Dependent Allen–Cahn Equation on Surfaces with Radial Basis Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper a numerical simulation based on radial basis functions is presented for the time-dependent Allen–Cahn equation on surfaces with no boundary. In order to approximate the temporal variable, a first-order time splitting technique is applied. The error analysis is given when the true solution lies on appropriate Sobolev spaces defined on surfaces. The method only requires a set of scattered points on a given surface and an approximation to the surface normal vectors at these points. Besides, the approach is based on Cartesian coordinates and thus any coordinate singularity has been omitted. Some numerical results are given to illustrate the ability of the technique on sphere, torus and red blood cell as three well-known surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Adalsteinsson, D., Sethian, J.A.: Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185(1), 271–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcangli, R., Lpez de Silanes, M.C., Torrens, J.J.: An extension of a bound for functions in Sobolev spaces, with applications to \((m, s)\)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)

  3. Arcangli, R., Lpez de Silanes, M.C., Torrens, J.J.: Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data. Numer. Math. 121, 587–608 (2012)

  4. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  5. Beneš, M., Chalupecký, V., Mikula, K.: Geometrical image segmentation by the Allen-Cahn equation. Appl. Numer. Math. 51, 187–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schr\(o\)dinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertalmo, M., Cheng, L., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calhoun, D.A., Helzel, C.: A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes. SIAM J. Sci. Comput. 31(6), 4066–4099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  10. Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, Y., Jeong, D., Lee, S., Yoo, M., Kim, J.: Motion by mean curvature of curves on surfaces using the Allen-Cahn equation. Int. J. Eng. Sci. 97, 126–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csomós, P., Faragó, I.: Error analysis of the numerical solution of split differential equations. Math. Comput. Model. 48, 1090–1106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357. Springer, Berlin (1988)

  14. Dziuk, G., Elliot, C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dziuk, G., Elliot, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  Google Scholar 

  16. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Hackensack (2007)

    Book  MATH  Google Scholar 

  17. Feng, Z., Yin, J., Zhou, J.: Inpainting algorithm for jacquared image based on phase-field model. In: IEEE Intelligent System and Knowledge Engineering ISKE, pp. 1203–1207 (2008)

  18. Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuselier, E.J., Wright, G.B.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41, 23–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuselier, E.J., Wright, G.B.: Scattered data interpolation on embedded submanifolds with retricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kay, D.A., Tomasi, A.: Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution. IEEE Trans. Image Process. 18, 2330–2339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, J., Lee, S., Choi, Y.: A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, J., Jeong, D., Yang, S.-D., Choi, Y.: A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces. J. Comput. Phys. 334, 170–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kowalczyk, M.: On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions. Ann. Mat. Pura Appl. 184, 17–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Gia, Q.T.: Galerkin approximation for elliptic PDEs on spheres. J. Approx. Theory 130, 123–147 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Le Gia, Q.T.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 121, 99–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces SIAM. J. Sci. Comput 39(5), 2129–2151 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Li, Y., Jeong, D., Choi, J., Lee, S., Kim, J.: Fast local image inpainting based on the Allen-Cahn model. Digit. Signal Process. 37, 65–74 (2015)

    Article  Google Scholar 

  32. Lee, H.G., Kim, J.: A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces. Comput. Methods Appl. Mech. Eng. 307, 32–43 (2016)

    Article  MathSciNet  Google Scholar 

  33. Macdonald, C.B., Ruuth, S.J.: Level set equations on surfaces via the closest point method. J. Sci. Comput. 35, 219–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirzaei, D.: Direct approximation on spheres using generalized moving least squares. BIT Numer. Math. 57, 1041–1063 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mirzaei, D.: A Petrov-Galerkin kernel approximation on the sphere. SIAM J. Numer. Anal. 56(1), 274–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Morton, T.M., Neamtu, M.: Error bonds for solving pseudodifferential equations on spheres. J. Approx. Theory 114, 242–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Narcowich, F.J., Sun, X., Ward, J.D.: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27, 107–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Narcowich, F.J., Ward, J.D.: Scattered-data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving PDEs on the sphere using highly localized kernel bases. Math. Comput. 86, 197–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ward, M.J.: Metastable bubble solutions for the Allen-Cahn equation with mass conservation. SIAM J. Appl. Math. 56, 1247–1279 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wendland, H.: Scattered Data Approximation. Cambridge Mongraph on Applied and Computational Mathematics. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  45. Wendland, H.: Divergence-free kernel methods for approximating the Stokes problem. SIAM J. Numer. Anal. 47(4), 3158–3179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 643–662 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, X., Zwieten, G.J., Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30, 180–203 (2014)

    Article  MathSciNet  Google Scholar 

  48. Xiao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 22, 2857–2877 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was in part supported by a Grant from IPM, No. 96650427. The authors are very grateful to reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Appendix

Appendix

Here, we provide a sample MATLAB code for simulating the Allen–Cahn equation on the unit sphere. Parts related to the approximation of the Laplace–Beltrami operator are borrowed from [20]. The subroutine for generating the minimum energy points should be provided by user.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, V., Mirzaei, D. & Dehghan, M. Numerical Simulation and Error Estimation of the Time-Dependent Allen–Cahn Equation on Surfaces with Radial Basis Functions. J Sci Comput 79, 493–516 (2019). https://doi.org/10.1007/s10915-018-0859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0859-7

Keywords