Abstract
In this paper, we consider an online basis enrichment mixed generalized multiscale method with oversampling, for solving flow problems in highly heterogeneous porous media. This is an extension of the online mixed generalized multiscale method (Chan et al. in Numer Math Theory Methods Appl 9(4):497–527, 2016). The multiscale online basis functions are computed by solving a Neumann problem in an over-sampled domain, instead of a standard neighborhood of a coarse face. We are motivated by the restricted domain decomposition method. Extensive numerical experiments are presented to demonstrate the performance of our methods for both steady-state flow, and two-phase flow and transport problems.
Similar content being viewed by others
References
Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2, 421–439 (2004)
Aarnes, J.E., Kippe, V., Lie, K.-A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28, 257–271 (2005)
Arbogast, T.: Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42(2), 576–598 (2004). (electronic)
Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007). (electronic)
Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)
Chan, H.Y., Chung, E.T., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory Methods Appl. 9(4), 497–527 (2016)
Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)
Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)
Chung, E.T., Efendiev, Y., Leung, W.T.: Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 302, 176–190 (2015)
Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)
Chung, E.T., Efendiev, Y., Li, G.: An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273, 54–76 (2014)
Durfolsky, L.J.: Numerical calculation of equivalent grid block permeability tensors of heterogeneous porous media: water resour res v27, n5, May 1991, pp. 299–708. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, p. A350. Pergamon (1991)
Efendiev, Y., Galvis, J.: A domain decomposition preconditioner for multiscale high-contrast problems. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, Volume 78 of Lecture Notes in Engineering and Computer Science and Engineering, pp. 189–196. Springer, New York (2011)
Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)
Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods. Oversampling strategies. Int. J. Multiscale Comput. Eng. 12(6), 465–484 (2014)
Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230, 937–955 (2011)
Efendiev, Y., Gildin, E., Yang, Y.: Online adaptive local-global model reduction for flows in heterogeneous porous media. Computation 4(2), 22 (2016)
Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications, vol. 4. Springer, New York (2009)
Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V.: Fast multi-scale reservoir simulations using POD-DEIM model reduction. SPE J. 21(6), 2141–2154 (2016)
Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)
Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)
Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)
Wheeler, M.F., Xue, G., Yotov, I.: A multiscale mortar multipoint flux mixed finite element method. ESAIM Math. Model. Numer. Anal. 46(4), 759–796 (2012)
Wu, X.-H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete Contin. Dyn. Syst. Ser. B 2(2), 185–204 (2002)
Yang, Y., Chung, E.T., Fu, S.: An enriched multiscale mortar space for high contrast flow problems. Commun. Comput. Phys. 23(2), 476–499 (2018)
Acknowledgements
The research of Eric Chung is partially supported by RGC and CUHK. Yanfang Yang’s work is supported by the National Natural Science Foundation of China (Grant No. 11901129).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, Y., Fu, S. & Chung, E.T. Online Mixed Multiscale Finite Element Method with Oversampling and Its Applications. J Sci Comput 82, 31 (2020). https://doi.org/10.1007/s10915-019-01121-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-019-01121-y