[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Online Mixed Multiscale Finite Element Method with Oversampling and Its Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider an online basis enrichment mixed generalized multiscale method with oversampling, for solving flow problems in highly heterogeneous porous media. This is an extension of the online mixed generalized multiscale method (Chan et al. in Numer Math Theory Methods Appl 9(4):497–527, 2016). The multiscale online basis functions are computed by solving a Neumann problem in an over-sampled domain, instead of a standard neighborhood of a coarse face. We are motivated by the restricted domain decomposition method. Extensive numerical experiments are presented to demonstrate the performance of our methods for both steady-state flow, and two-phase flow and transport problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2, 421–439 (2004)

    Article  MathSciNet  Google Scholar 

  2. Aarnes, J.E., Kippe, V., Lie, K.-A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28, 257–271 (2005)

    Article  Google Scholar 

  3. Arbogast, T.: Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal. 42(2), 576–598 (2004). (electronic)

    Article  MathSciNet  Google Scholar 

  4. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007). (electronic)

    Article  MathSciNet  Google Scholar 

  5. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chan, H.Y., Chung, E.T., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory Methods Appl. 9(4), 497–527 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chung, E.T., Efendiev, Y., Leung, W.T.: Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 302, 176–190 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chung, E.T., Efendiev, Y., Li, G.: An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273, 54–76 (2014)

    Article  MathSciNet  Google Scholar 

  12. Durfolsky, L.J.: Numerical calculation of equivalent grid block permeability tensors of heterogeneous porous media: water resour res v27, n5, May 1991, pp. 299–708. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, p. A350. Pergamon (1991)

  13. Efendiev, Y., Galvis, J.: A domain decomposition preconditioner for multiscale high-contrast problems. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, Volume 78 of Lecture Notes in Engineering and Computer Science and Engineering, pp. 189–196. Springer, New York (2011)

    Google Scholar 

  14. Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  15. Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods. Oversampling strategies. Int. J. Multiscale Comput. Eng. 12(6), 465–484 (2014)

    Article  Google Scholar 

  16. Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230, 937–955 (2011)

    Article  MathSciNet  Google Scholar 

  17. Efendiev, Y., Gildin, E., Yang, Y.: Online adaptive local-global model reduction for flows in heterogeneous porous media. Computation 4(2), 22 (2016)

    Article  Google Scholar 

  18. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications, vol. 4. Springer, New York (2009)

    MATH  Google Scholar 

  19. Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V.: Fast multi-scale reservoir simulations using POD-DEIM model reduction. SPE J. 21(6), 2141–2154 (2016)

  20. Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)

  21. Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  Google Scholar 

  22. Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  Google Scholar 

  23. Wheeler, M.F., Xue, G., Yotov, I.: A multiscale mortar multipoint flux mixed finite element method. ESAIM Math. Model. Numer. Anal. 46(4), 759–796 (2012)

    Article  MathSciNet  Google Scholar 

  24. Wu, X.-H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete Contin. Dyn. Syst. Ser. B 2(2), 185–204 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Yang, Y., Chung, E.T., Fu, S.: An enriched multiscale mortar space for high contrast flow problems. Commun. Comput. Phys. 23(2), 476–499 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Eric Chung is partially supported by RGC and CUHK. Yanfang Yang’s work is supported by the National Natural Science Foundation of China (Grant No. 11901129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fu, S. & Chung, E.T. Online Mixed Multiscale Finite Element Method with Oversampling and Its Applications. J Sci Comput 82, 31 (2020). https://doi.org/10.1007/s10915-019-01121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01121-y

Keywords

Navigation