Abstract
In this paper, we propose offline and online adaptive enrichment algorithms for the generalized multiscale approximation of a mixed finite element method with velocity elimination to solve the subsurface flow problem in high-contrast and heterogeneous porous media. In the offline adaptive method, we first derive an a-posteriori error indicator based on one weighted L2-norm of the local residual operator, where the weighted L2-norm is related to the pressure fields of the local snapshot space. Then we enrich the multiscale space by increasing the number of offline basis functions iteratively on coarse elements where the error indicator takes large values. While in the online adaptive method, we add online basis functions on selected coarse elements based on another weighted L2-norm of the local residual operator to enrich the multiscale space, here the weighted L2-norm is associated with the velocity fields of the local snapshot space. Online basis functions are constructed in the online stage depending on the solution of the previous iteration and some optimal estimates. We give theoretical analyses for the convergences of these two adaptive methods, which show that sufficient initial basis functions (belong to the offline space) lead to faster convergence rates. A series of numerical examples are provided to highlight the performances of both these two adaptive methods and also validate the theoretical analyses. Both offline and online adaptive methods are effective that can reduce the relative error substantially. In addition, the online adaptive method generally performs better than the offline adaptive method as online basis functions contain important global information such as distant effects that cannot be captured by offline basis functions. The numerical results also show that with a suitable initial multiscale space that includes all offline basis functions corresponding to relative smaller eigenvalues of each local spectral decomposition in the offline stage, the convergence rate of the online enrichment is independent of the permeability contrast.
Similar content being viewed by others
References
Durlofsky, L. J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)
Wu, X. -H., Efendiev, Y., Hou, T. Y.: Analysis of upscaling absolute permeability. Discret. Contin. Dyn. Syst.-B 2(2), 185 (2002)
Gao, K., Chung, E. T., Gibson, JrR. L., Fu, S., Efendiev, Y.: A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory. Geophysics 80(4), D385–D401 (2015)
Singh, G., Leung, W., Wheeler, M. F.: Multiscale methods for model order reduction of non-linear multiphase flow problems. Comput. Geosci. 23(2), 305–323 (2019)
Amanbek, Y., Singh, G., Wheeler, M. F., van Duijn, H.: Adaptive numerical homogenization for upscaling single phase flow and transport. J. Comput. Phys. 387, 117–133 (2019)
Chu, C. -C., Graham, I., Hou, T. -Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010)
Chung, E. T., Efendiev, Y.: Reduced-contrast approximations for high-contrast multiscale flow problems. Multiscale Model. Simul. 8(4), 1128–1153 (2010)
Chung, E. T., Efendiev, Y., Gibson, JrR. L.: An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media. Adv. Adapt. Data Anal. 3(01n02), 251–268 (2011)
Chung, E. T., Efendiev, Y., Leung, W. T.: Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 12(4), 1691–1721 (2014)
Chung, E. T., Leung, W. T.: A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection-diffusion problems. Commun. Comput. Phys. 14(2), 370–392 (2013)
Efendiev, Y., Galvis, J., Wu, X. -H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230(4), 937–955 (2011)
Efendiev, Y., Hou, T. Y.: Multiscale finite element methods: theory and applications, vol. 4. Springer Science & Business Media (2009)
Efendiev, Y., Hou, T. Y., Ginting, V., et al.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)
Ghommem, M., Presho, M., Calo, V. M., Efendiev, Y.: Mode decomposition methods for flows in high-contrast porous media. Global–local approach. J. Comput. Phys. 253, 226–238 (2013)
Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)
Efendiev, Y. R., Hou, T. Y., Wu, X. -H.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37(3), 888–910 (2000)
Owhadi, H., Zhang, L.: Metric-based upscaling. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 60(5), 675–723 (2007)
Amanbek, Y., Singh, G., Pencheva, G., Wheeler, M. F.: Error indicators for incompressible Darcy Flow problems using enhanced velocity mixed finite element method. Comput. Methods Appl. Mech. Eng. 363, 112884 (2020)
Larson, M. G., Målqvist, A.: Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196(21-24), 2313–2324 (2007)
Efendiev, Y., Galvis, J., Hou, T. Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)
Efendiev, Y., Galvis, J., Lazarov, R., Moon, M., Sarkis, M.: Generalized multiscale finite element method. Symmetric interior penalty coupling. J. Comput. Phys. 255, 1–15 (2013)
Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods: Oversampling strategies. Int. J. Multiscale Comput. Eng. 12(6)
Hou, T. Y., Wu, X. -H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)
Chung, E. T., Efendiev, Y., Lee, C. S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)
Chung, E. T., Efendiev, Y., Leung, W. T.: An adaptive generalized multiscale discontinuous Galerkin method for high-contrast flow problems. Multiscale Model. Simul. 16(3), 1227–1257 (2018)
Chung, E. T., Efendiev, Y., Li, G.: An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273, 54–76 (2014)
Chan, H. Y., Chung, E., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory Methods Appl. 9(4), 497–527 (2016)
Chung, E. T., Li, Y.: Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients. J. Comput. Appl. Math. 345, 357–373 (2019)
Chung, E. T., Efendiev, Y., Leung, W. T.: Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 302, 176–190 (2015)
Chung, E. T., Efendiev, Y., Leung, W. T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)
Yang, Y., Chung, E. T., Fu, S.: Residual driven online mortar mixed finite element methods and applications. J. Comput. Appl. Math. 340, 318–333 (2018)
He, Z., Chung, E. T., Chen, J., Chen, Z.: Generalized multiscale approximation of a multipoint flux mixed finite element method for Darcy–Forchheimer model. J. Comput. Appl. Math. 391, 113466 (2021)
Chen, J., Chung, E. T., He, Z., Sun, S.: Generalized multiscale approximation of mixed finite elements with velocity elimination for subsurface flow. J Comput. Phys. 404, 109133 (2020)
He, Z., Chen, H., Chen, J., Chen, Z.: Generalized multiscale approximation of a mixed finite element method with velocity elimination for Darcy flow in fractured porous media. Comput. Methods Appl. Mech. Eng. 381, 113846 (2021)
Chung, E., Efendiev, Y., Hou, T. Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016)
Russell, T. F., Wheeler, M. F.: Finite element and finite difference methods for continuous flows in porous media. In: The mathematics of reservoir simulation. SIAM, pp. 35–106 (1983)
Klausen, R. A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104(3), 317–337 (2006)
Wheeler, M. F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)
Hou, J., Sun, S., Chen, Z.: Numerical comparison of robustness of some reduction methods in rough grids. Numer. Methods Partial Differ Equ. 30(5), 1484–1506 (2014)
Jenny, P., Lee, S., Tchelepi, H. A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)
Lunati, I., Jenny, P.: The Multiscale Finite Volume Method A flexible tool to model physically complex flow in porous media. In: Proceedings of European Conference of Mathematics of Oil Recovery X. Amsterdam, The Netherlands (2006)
Wolfsteiner, C., Lee, S. H., Tchelepi, H. A.: Well modeling in the multiscale finite volume method for subsurface flow simulation. Multiscale Model. Simul. 5(3), 900–917 (2006)
Hajibeygi, H., Bonfigli, G., Hesse, M. A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227(19), 8604–8621 (2008)
Lunati, I., Lee, S. H.: An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model. Simul. 8(1), 96–109 (2009)
Calo, V. M., Efendiev, Y., Galvis, J., Li, G.: Randomized oversampling for generalized multiscale finite element methods. Multiscale Model. Simul. 14(1), 482–501 (2016)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is partially supported by Key Program Special Fund in XJTLU (KSF-E-50, KSF-E-21, KSF-P-02) and XJTLU Research Development Funding (RDF-19-01-15). The research of Eric Chung is partially supported by the Hong Kong RGC General Research Fund (Project numbers 14304719 and 14302018) and CUHK Faculty of Science Direct Grant 2019-20.
Rights and permissions
About this article
Cite this article
He, Z., Chung, E.T., Chen, J. et al. Adaptive generalized multiscale approximation of a mixed finite element method with velocity elimination. Comput Geosci 25, 1681–1708 (2021). https://doi.org/10.1007/s10596-021-10068-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-021-10068-9