Abstract
Numerical time propagation of semi-linear equations of the Schrödinger type can be performed by the use of exponential integrators. The main difficulty for efficient implementation of this type of schemes lies in the evaluation of \(\varphi \)-functions of a matrix argument. We develop a Chebyshev series approximation for these functions and propose a simple algorithm for the evaluation of the series coefficients. The domain of convergence of the series is consistent with the spectrum of Schrödinger type operators. This approximation is shown to be accurate and performs favorably in comparison to other state of the art methods for approximation of \(\varphi \)-functions.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
Bao, W., Jaksch, D.: An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 41, 1406–1426 (2003)
Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)
Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)
Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose–Einstein condensates. SIAM J. Numer. Anal. 55, 1387–1411 (2017)
Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)
Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80, 189–201 (2007)
Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators. Appl. Numer. Math. 59, 568–581 (2009)
Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102, 367–381 (2006)
Calvo, M.P., Portillo, A.M.: Variable step implementation of ETD methods for semilinear problems. Appl. Math. Comput. 196, 627–637 (2008)
Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012)
Chan, T.F., Lee, D., Shen, L.: Stable explicit schemes for equations of the Schrödinger type. SIAM J. Numer. Anal. 23, 274–281 (1986)
Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)
Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)
Cryer, C.W.: The difference analogue of Gauss’ theorem. SIAM J. Numer. Anal. 4, 155–162 (1967)
Fei, Z., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)
Göckler, T., Grimm, V.: Uniform approximation of \(\varphi \)-functions in exponential integrators by a rational Krylov subspace method with simple poles. SIAM J. Matrix Anal. Appl. 35, 1467–1489 (2014)
Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)
Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47, 786–803 (2009)
Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)
Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 7288 (2005)
Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)
Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)
Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, New York (1967)
Minchev, B., Wright, W.M.: A review of exponential integrators for semilinear problems, Technical Report 2/05. Department of Mathematical Sciences, NTNU, Norway (2005)
Niesen, J., Wright, W.M.: Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38, 22:1–22:19 (2012)
Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)
Schaefer, I., Tal-Ezer, H., Kosloff, R.: Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. J. Comput. Phys. 343, 368–413 (2017)
Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Caratheodory–Fejer approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)
Skaflestad, B., Wright, W.M.: The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer. Math. 59, 783–799 (2009)
Suhov, A.Y.: A spectral method for the time evolution in parabolic problems. J. Sci. Comput. 29, 201–217 (2006)
Suhov, A.Y.: An accurate polynomial approximation of exponential integrators. J. Sci. Comput. 60, 684–698 (2014)
Tal-Ezer, H.: On restart and error estimation for Krylov approximation of \(w = f(A)v\). SIAM J. Sci. Comput. 29, 2426–2441 (2007)
Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3971 (1984)
Toh, K.-C., Trefethen, L.N.: The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl. 21, 145–165 (1999)
Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006)
Tokman, M., Loffeld, J., Tranquilli, P.: New adaptive exponential propagation iterative methods of Runge–Kutta type. SIAM J. Sci. Comput. 34, A2650–A2669 (2012)
Rainwater, G., Tokman, M.: A new class of split exponential propagation iterative methods of Runge–Kutta type (sEPIRK) for semilinear systems of ODEs. J. Comput. Phys. 269, 40–60 (2014)
Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)
Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)
Wu, L.: Dufort-Frankel-type methods for linear and nonlinear Schrödinger. SIAM J. Numer. Anal. 33, 1526–1533 (1996)
Acknowledgements
The author wishes to thank Adi Ditkowski for valuable discussions of the method presented in this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Meltzer, A.Y. An Accurate Approximation of Exponential Integrators for the Schrödinger Equation. J Sci Comput 81, 1493–1508 (2019). https://doi.org/10.1007/s10915-019-01075-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01075-1