[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient and accurate computation for the \(\varphi\)-functions arising from exponential integrators

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we develop efficient and accurate algorithms for evaluating both \(\varphi _l(A)\) and \(\varphi _l(A)b,\) where \(\varphi _l(\cdot )\) is the function related to the exponential defined by \(\varphi _l(z)\equiv \sum \nolimits ^{\infty }_{k=0}\frac{z^k}{(l+k)!}\), A is an \(N\times N\) matrix and b is an N dimensional vector. Such matrix functions play a key role in a class of numerical methods well-known as exponential integrators. The algorithms use the modified scaling and squaring procedure combined with truncated Taylor series. A quasi-backward error analysis is presented to find the optimal value of the scaling and the degree of the Taylor approximation. Some useful techniques are employed for reducing the computational cost. Numerical comparisons with state-of-the-art algorithms show that the algorithms perform well in both accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    Article  MathSciNet  Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  3. Berland, H., Skaflestad, B., Wright, W.M.: EXPINT—a MATLAB Package for Exponential Integrators. ACM Trans. Math. Software, 33(1), Article 4, (2007)

  4. Cong, Y.H., Li, D.P.: Block Krylov subspace methods for approximating the linear combination of phi-functions. Comput. Math. Appli. 72, 846–855 (2016)

    Article  Google Scholar 

  5. Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection-diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172(1), 79–99 (2004)

    Article  MathSciNet  Google Scholar 

  6. Caliari, M., Zivcovich, F.: On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm. J. Comput. Appl. Math. 346, 532–548 (2019)

    Article  MathSciNet  Google Scholar 

  7. Davies, I., Higham, N.J.: A Schur–Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25, 464–485 (2003)

    Article  MathSciNet  Google Scholar 

  8. Defez, E., Ibáñez, J., Sastre, J., Peinado, J., Alonso, P.: A new efficient and accurate spline algorithm for the matrix exponential computation. J. Comput. Appl. Math. 337, 354–365 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dieci, L., Papini, A.: Padé approximation for the exponential of a block triangular matrix. Linear Algebra Appl. 308, 183–202 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  11. Gaudrealt, S., Rainwater, G., Tokman, M.: KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys. 372(1), 236–255 (2018)

    Article  MathSciNet  Google Scholar 

  12. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26, 1179–1193 (2005)

    Article  MathSciNet  Google Scholar 

  13. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  14. Higham, N.J.: The matrix computation toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox

  15. Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 1185–1201 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  Google Scholar 

  17. Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47, 786–803 (2009)

    Article  MathSciNet  Google Scholar 

  18. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kenney, C.S., Laub, A.J.: A Schur-Fréchet algorithm for computing the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl. 19, 640–663 (1998)

    Article  MathSciNet  Google Scholar 

  20. Li, D.P., Cong, Y.H.: Approximation of the linear combination of \(\varphi\)-functions using the block shift-and-invert Krylov subspace method. J. Appli. Anal. Comput. 4, 1402–1416 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lu, Y.Y.: Computing a matrix function for exponential integrators. J. Comput. Appl. Math. 161(1), 203–216 (2003)

    Article  MathSciNet  Google Scholar 

  22. Minchev, B.V., Wright, W.M.: A review of exponential integrators for first order semi-linear problems. Tech. report 2/05, Department of Mathematics, NTNU, (2005)

  23. Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  24. Najfeld, I., Havel, T.F.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16, 321–375 (1995)

    Article  MathSciNet  Google Scholar 

  25. Niesen, J., Wright, W.: Algorithm 919: a Krylov subspace algorithm for evaluating the phi- functions appearing in exponential integrators. ACM Trans. Math. Softw. 38(3), Article 22, (2012)

  26. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

    Article  MathSciNet  Google Scholar 

  27. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  28. Sastre, J., Ibáñez, J., Defez, E.: Boosting the computation of the matrix exponential. Appl. Math. Comput. 340, 206–220 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Sastre, J., Ibáñez, J., Defez, E., Ruiz, P.: Efficient orthogonal matrix polynomial based method for computing matrix exponential. Appl. Math. Comput. 217(14), 6451–6463 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Sastre, J., Ibáñez, J., Defez, E., Ruiz, P.: New scaling-squaring Taylor algorithms for computing the matrix exponential. SIAM J. Sci. Comput. 37(1), 439–455 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 130–156 (1998)

    Article  Google Scholar 

  32. Skaflestad, B., Wright, W.M.: The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer. Math. 59, 783–799 (2009)

    Article  MathSciNet  Google Scholar 

  33. Ward, R.C.: Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Numer. Anal. 14, 600–610 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees and the editor for their helpful suggestions and comments. This work was supported in part by the Jilin Scientific and Technological Development Program (Grant No. 20200201276JC) and the Natural Science Foundation of Jilin Province (Grant No. 20200822KJ), and the Scientific Startup Foundation for Doctors of Changchun Normal University (Grant No. 002006059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yang, S. & Lan, J. Efficient and accurate computation for the \(\varphi\)-functions arising from exponential integrators. Calcolo 59, 11 (2022). https://doi.org/10.1007/s10092-021-00453-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00453-2

Keywords

Mathematics Subject Classification

Navigation