[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Preconditioning for Radial Basis Function Partition of Unity Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Meshfree radial basis function (RBF) methods are of interest for solving partial differential equations due to attractive convergence properties, flexibility with respect to geometry, and ease of implementation. For global RBF methods, the computational cost grows rapidly with dimension and problem size, so localised approaches, such as partition of unity or stencil based RBF methods, are currently being developed. An RBF partition of unity method (RBF–PUM) approximates functions through a combination of local RBF approximations. The linear systems that arise are locally unstructured, but with a global structure due to the partitioning of the domain. Due to the sparsity of the matrices, for large scale problems, iterative solution methods are needed both for computational reasons and to reduce memory requirements. In this paper we implement and test different algebraic preconditioning strategies based on the structure of the matrix in combination with incomplete factorisations. We compare their performance for different orderings and problem settings and find that a no-fill incomplete factorisation of the central band of the original discretisation matrix provides a robust and efficient preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66(4), 811–841 (2014). doi:10.1007/s11075-013-9764-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997). doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

  3. Baxter, B.J.C.: Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices. Comput. Math. Appl. 43(3–5), 305–318 (2002). doi:10.1016/S0898-1221(01)00288-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11(2–3), 253–270 (1999). doi:10.1023/A:1018932227617

    Article  MathSciNet  MATH  Google Scholar 

  5. Beatson, R.K., Light, W.A., Billings, S.: Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J. Sci. Comput. 22(5), 1717–1740 (2000). doi:10.1137/S1064827599361771

    Article  MathSciNet  MATH  Google Scholar 

  6. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comp. Phys. 182, 418–477 (2002). doi:10.1006/jcph.2002.7176

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, D., Ling, L., Kansa, E., Levesley, J.: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 29(4), 343–353 (2005). doi:10.1016/j.enganabound.2004.05.006

    Article  MATH  Google Scholar 

  8. Cavoretto, R., De Rossi, A.: Spherical interpolation using the partition of unity method: an efficient and flexible algorithm. Appl. Math. Lett. 25(10), 1251–1256 (2012). doi:10.1016/j.aml.2011.11.006

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavoretto, R., De Rossi, A.: A meshless interpolation algorithm using a cell-based searching procedure. Comput. Math. Appl. 67(5), 1024–1038 (2014). doi:10.1016/j.camwa.2014.01.007

    Article  MathSciNet  Google Scholar 

  10. Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching procedure. arXiv:1409.5423 [math.NA] (2014)

  11. Cavoretto, R., De Rossi, A., Donatelli, M., Serra-Capizzano, S.: Spectral analysis and preconditioning techniques for radial basis function collocation matrices. Numer. Linear Algebra Appl. 19(1), 31–52 (2012). doi:10.1002/nla.774

    Article  MathSciNet  MATH  Google Scholar 

  12. De Marchi, S., Santin, G.: Fast computation of orthonormal basis for RBF spaces through Krylov space methods. BIT, pp. 1–18 (2014). doi:10.1007/s10543-014-0537-6

  13. Deng, Q., Driscoll, T.A.: A fast treecode for multiquadric interpolation with varying shape parameters. SIAM J. Sci. Comput. 34(2), A1126–A1140 (2012). doi:10.1137/110836225

    Article  MathSciNet  MATH  Google Scholar 

  14. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3–5), 413–422 (2002). doi:10.1016/S0898-1221(01)00295-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Driscoll, T.A., Toh, K.C., Trefethen, L.N.: From potential theory to matrix iterations in six steps. SIAM Rev. 40, 547–578 (1998). doi:10.1137/S0036144596305582

    Article  MathSciNet  MATH  Google Scholar 

  16. Embree, M.: How descriptive are GMRES convergence bounds? Tech. Rep. 99/08, Oxford University Computing Laboratory Numerical Analysis (1999)

  17. Farrell, P., Pestana, J.: Block preconditioners for linear systems arising from multiscale collocation with compactly supported RBFs. Numer. Linear Algebra Appl. 22(4), 731–747 (2015). doi:10.1002/nla.1984

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasshauer, G.E.: Meshfree approximation methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007). doi:10.1142/6437

  19. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012). doi:10.1137/110824784

    Article  MathSciNet  MATH  Google Scholar 

  20. Faul, A.C., Goodsell, G., Powell, M.J.D.: A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA J. Numer. Anal. 25(1), 1–24 (2005). doi:10.1093/imanum/drh021

    Article  MathSciNet  MATH  Google Scholar 

  21. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi:10.1137/09076756X

    Article  MathSciNet  MATH  Google Scholar 

  22. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013). doi:10.1016/j.camwa.2012.11.006

    Article  MathSciNet  MATH  Google Scholar 

  23. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007). doi:10.1137/060671991

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004). doi:10.1016/j.camwa.2003.08.010

    Article  MathSciNet  MATH  Google Scholar 

  25. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl. 47(1), 37–55 (2004). doi:10.1016/S0898-1221(04)90004-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi:10.1016/j.camwa.2007.01.028

    Article  MathSciNet  MATH  Google Scholar 

  27. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel spaces on the unit sphere. SIAM J. Numer. Anal. 51(5), 2538–2562 (2013). doi:10.1137/120876940

    Article  MathSciNet  MATH  Google Scholar 

  28. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960). doi:10.1007/BF01386213

    Article  MathSciNet  MATH  Google Scholar 

  29. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003). doi:10.1016/S0898-1221(03)90151-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005). doi:10.1016/j.camwa.2005.01.010

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for partial differential equations (2015) (in press)

  32. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi:10.1137/120899108

    Article  MathSciNet  MATH  Google Scholar 

  33. Liesen, J., Strakos̆, Z.: Krylov subspace methods: principles and analysis. In: Stuart, A.M., Süli, E. (eds.) Numerical Mathematics and Scientific Computation, vol. 25. Oxford University Press, Oxford (2013)

  34. Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23(1–2), 31–54 (2005). doi:10.1007/s10444-004-1809-5

    Article  MathSciNet  MATH  Google Scholar 

  35. MATLAB: version 8.3.0.532 (R2014a). The MathWorks Inc., Natick, Massachusetts (2014)

  36. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977). doi:10.1090/S0025-5718-1977-0438681-4

    MathSciNet  MATH  Google Scholar 

  37. Müller, S., Schaback, R.: A Newton basis for kernel spaces. J. Approx. Theory 161(2), 645–655 (2009). doi:10.1016/j.jat.2008.10.014

    Article  MathSciNet  MATH  Google Scholar 

  38. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011). doi:10.1016/j.cam.2011.05.021

    Article  MathSciNet  MATH  Google Scholar 

  39. Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010). doi:10.1007/s10444-008-9089-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014). doi:10.1007/s00365-013-9211-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics (2003). doi:10.1137/1.9780898718003

  42. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). doi:10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  43. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J. Sci. Comp. 1–27 (2014). doi:10.1007/s10915-014-9935-9

  44. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. of Math. (2) 39(4), 811–841 (1938). doi:10.2307/1968466

    Article  MathSciNet  MATH  Google Scholar 

  45. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Tech. Rep. 2015–001, Department of Information Technology, Uppsala University (2015)

  46. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM ’68, pp. 517–524. ACM, New York, NY, USA (1968). doi:10.1145/800186.810616

  47. Sonneveld, P., van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems. SIAM J. Sci. Comput. 31, 1035–1062 (2008). doi:10.1137/070685804

    Article  MathSciNet  MATH  Google Scholar 

  48. von Sydow, L., Höök, L.J., Larsson, E., Lindström, E., Milovanović, S., Persson, J., Shcherbakov, V., Shpolyanskiy, Y., Sirén, S., Toivanen, J., Waldén, J., Wiktorsson, M., Giles, M.B., Levesley, J., Li, J., Oosterlee, C.W., Ruijter, M.J., Toropov, A., Zhao, Y.: BENCHOP–The BENCHmarking project in option pricing. Int. J. Comput. Math. (2015). doi:10.1080/00207160.2015.1072172

  49. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992). doi:10.1137/0913035

    Article  MathSciNet  MATH  Google Scholar 

  50. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995). doi:10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  51. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Approximation theory, X (St. Louis, MO, 2001), Innov. Appl. Math., pp. 473–483. Vanderbilt Univ. Press, Nashville, TN (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Larsson.

Additional information

Authors are listed in alphabetical order. Heryudono was partially supported by AFOSR grant FA9550-09-1-0208 and by National Science Foundation grant DMS-1318427.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heryudono, A., Larsson, E., Ramage, A. et al. Preconditioning for Radial Basis Function Partition of Unity Methods. J Sci Comput 67, 1089–1109 (2016). https://doi.org/10.1007/s10915-015-0120-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0120-6

Keywords

Mathematics Subject Classification

Navigation