Abstract
We investigate adaptivity issues for the approximation of Poisson equations via radial basis function-based partition of unity collocation. The adaptive residual subsampling approach is performed with quasi-uniform node sequences leading to a flexible tool which however might suffer from numerical instability due to ill-conditioning of the collocation matrices. We thus develop a hybrid method which makes use of the so-called variably scaled kernels. The proposed algorithm numerically ensures the convergence of the adaptive procedure.
Similar content being viewed by others
References
Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput. 216, 317–331 (2010)
Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35, 199–219 (2015)
Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165, 261–274 (2005)
Cancelliere, R., Gai, M., Gallinari, P., Rubini, L.: OCReP: an optimally conditioned regularization for pseudoinversion based neural training. Neural Netw. 71, 76–87 (2015)
Cavoretto, R., De Rossi, A., Dell’Accio, F., Di Tommaso, F.: Fast computation of triangular Shepard interpolants. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.03.012
Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants through a block-based searching technique. Comput. Math. Appl. 71, 2568–2584 (2016)
Cavoretto, R., De Rossi, A., Perracchione, E., Venturino, E.: Graphical representation of separatrices of attraction basins in two and three-dimensional dynamical systems. Int. J. Comput. Methods 14, 1750008 (2017)
Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert–Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68, 393–422 (2015)
Davydov, O., Oanh, D.T.: Adaptive meshless centres and RBF stencils for Poisson equation. J. Comput. Phys. 304, 230–287 (2011)
De Marchi, S.: On optimal center locations for radial basis interpolation: computational aspects. Rend. Sem. Mat. Torino 61, 343–358 (2003)
De Marchi, S., Idda, A., Santin, G.: A rescaled method for RBF approximation. In: Fasshauer, G.E., et al. (eds.) Approximation Theory XV: San Antonio 2016, vol. 201, pp. 39–59. Springer, New York (2017)
De Marchi, S., Martínez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. App. Math. (2018). https://doi.org/10.1016/j.cam.2018.07.020
De Marchi, S., Santin, G.: Fast computation of orthonormal basis for RBF spaces through Krylov space methods. BIT 55, 949–966 (2015)
De Rossi, A., Perracchione, E., Venturino, E.: Fast strategy for PU interpolation: an application for the reconstruction of separatrix manifolds. Dolom. Res. Notes Approx. 9, 3–12 (2016)
Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)
Fasshauer, G.E.: Dealing with Ill-conditioned RBF systems. Dolomites Res. Notes Approx. 1 (2008). https://www.emis.de/journals/DRNA/3-12.html
Fasshauer, G.E.: Meshfree Approximations Methods with Matlab. World Scientific, Singapore (2007)
Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345–368 (2007)
Farrell, P., Wendland, H.: RBF multiscale collocation for second order elliptic boundary value problems. J. Numer. Anal. 51, 2403–2425 (2013)
Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)
Francomano, E., Hilker, F.M., Paliaga, M., Venturino, E.: An efficient method to reconstruct invariant manifolds of saddle points. Dolom. Res. Notes Approx. 10, 25–30 (2017)
Fuhry, M., Reichel, L.: A new Tikhonov regularization method. Numer. Algorithms 59, 433–445 (2012)
Heryudono, A., Larsson, E., Ramage, A., Von Sydow, L.: Preconditioning for radial basis function partition of unity methods. J. Sci. Comput. 67, 1089–1109 (2016)
Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)
Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32, 13–25 (2003)
Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proceedings of 1986 Simulation Conference, vol. l4, pp. 111–117 (1986)
Kowalewski, M., Larsson, E., Heryudono, A.: An adaptive interpolation scheme for molecular potential energy surfaces. J. Chem. Phys. 145, 84–104 (2016)
Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)
Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35, A2096–A2119 (2013)
Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39, A2538–A2563 (2017)
Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23, 31–54 (2005)
Ling, L., Opfer, R., Schaback, R.: Results on meshless collocation techniques. Eng. Anal. Bound. Elem. 30, 247–253 (2006)
Melenk, J.M., Babu\(\check{\text{s}}\)ka, I., Basic theory and applications: The partition of unity finite element method. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)
Oanh, D.T., Davydov, O., Phu, H.X: Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Preprint (2016)
Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236, 575–588 (2011)
Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.08.006
Rossini, M.: Interpolating functions with gradient discontinuities via variably scaled kernels. Dolom. Res. Notes Approx. 11, 3–14 (2018)
Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. J. Sci. Comput. 64, 341–367 (2015)
Santin, G., Haasdonk, B.: Convergence rate of the data-independent \(P\)-greedy algorithm in kernel-based approximation. In: Dolomites Research Notes on Approximation, vol. 10, pp. 68–78. Special issue (2017)
Sarra, S.A.: The Matlab radial basis function toolbox. J. Open Res. Softw. 5, 1–10 (2017)
Sarra, S.A., Bay, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Preprint (2017)
Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of 23-rd National Conference, Brandon/Systems Press, Princeton, pp. 517–524 (1968)
Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45, 333–351 (2007)
Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71, 185–200 (2016)
Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)
Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Chui, C.K. (ed.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt University Press, Nashville (2002)
Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
Acknowledgements
We sincerely thank the reviewers for their insightful comments. This research has been accomplished within Rete ITaliana di Approssimazione (RITA) and supported by GNCS-IN\(\delta \)AM. The first author was partially supported by the research project Approximation by radial basis functions and polynomials: applications to CT, MPI and PDEs on manifolds, No. DOR1695473. The third author was partially supported by the research project Radial basis functions approximations: stability issues and applications, No. BIRD167404.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
De Marchi, S., Martínez, A., Perracchione, E. et al. RBF-Based Partition of Unity Methods for Elliptic PDEs: Adaptivity and Stability Issues Via Variably Scaled Kernels. J Sci Comput 79, 321–344 (2019). https://doi.org/10.1007/s10915-018-0851-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0851-2
Keywords
- Partition of unity method
- Radial basis functions
- Meshfree approximation
- Elliptic PDEs
- Variably scaled kernels