[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

RBF-Based Partition of Unity Methods for Elliptic PDEs: Adaptivity and Stability Issues Via Variably Scaled Kernels

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate adaptivity issues for the approximation of Poisson equations via radial basis function-based partition of unity collocation. The adaptive residual subsampling approach is performed with quasi-uniform node sequences leading to a flexible tool which however might suffer from numerical instability due to ill-conditioning of the collocation matrices. We thus develop a hybrid method which makes use of the so-called variably scaled kernels. The proposed algorithm numerically ensures the convergence of the adaptive procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput. 216, 317–331 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35, 199–219 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165, 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Cancelliere, R., Gai, M., Gallinari, P., Rubini, L.: OCReP: an optimally conditioned regularization for pseudoinversion based neural training. Neural Netw. 71, 76–87 (2015)

    Article  MATH  Google Scholar 

  5. Cavoretto, R., De Rossi, A., Dell’Accio, F., Di Tommaso, F.: Fast computation of triangular Shepard interpolants. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.03.012

  6. Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants through a block-based searching technique. Comput. Math. Appl. 71, 2568–2584 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cavoretto, R., De Rossi, A., Perracchione, E., Venturino, E.: Graphical representation of separatrices of attraction basins in two and three-dimensional dynamical systems. Int. J. Comput. Methods 14, 1750008 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert–Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68, 393–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davydov, O., Oanh, D.T.: Adaptive meshless centres and RBF stencils for Poisson equation. J. Comput. Phys. 304, 230–287 (2011)

    MathSciNet  MATH  Google Scholar 

  10. De Marchi, S.: On optimal center locations for radial basis interpolation: computational aspects. Rend. Sem. Mat. Torino 61, 343–358 (2003)

    MathSciNet  MATH  Google Scholar 

  11. De Marchi, S., Idda, A., Santin, G.: A rescaled method for RBF approximation. In: Fasshauer, G.E., et al. (eds.) Approximation Theory XV: San Antonio 2016, vol. 201, pp. 39–59. Springer, New York (2017)

    Chapter  Google Scholar 

  12. De Marchi, S., Martínez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. App. Math. (2018). https://doi.org/10.1016/j.cam.2018.07.020

  13. De Marchi, S., Santin, G.: Fast computation of orthonormal basis for RBF spaces through Krylov space methods. BIT 55, 949–966 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Rossi, A., Perracchione, E., Venturino, E.: Fast strategy for PU interpolation: an application for the reconstruction of separatrix manifolds. Dolom. Res. Notes Approx. 9, 3–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fasshauer, G.E.: Dealing with Ill-conditioned RBF systems. Dolomites Res. Notes Approx. 1 (2008). https://www.emis.de/journals/DRNA/3-12.html

  17. Fasshauer, G.E.: Meshfree Approximations Methods with Matlab. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  18. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farrell, P., Wendland, H.: RBF multiscale collocation for second order elliptic boundary value problems. J. Numer. Anal. 51, 2403–2425 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Francomano, E., Hilker, F.M., Paliaga, M., Venturino, E.: An efficient method to reconstruct invariant manifolds of saddle points. Dolom. Res. Notes Approx. 10, 25–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuhry, M., Reichel, L.: A new Tikhonov regularization method. Numer. Algorithms 59, 433–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heryudono, A., Larsson, E., Ramage, A., Von Sydow, L.: Preconditioning for radial basis function partition of unity methods. J. Sci. Comput. 67, 1089–1109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32, 13–25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proceedings of 1986 Simulation Conference, vol. l4, pp. 111–117 (1986)

  27. Kowalewski, M., Larsson, E., Heryudono, A.: An adaptive interpolation scheme for molecular potential energy surfaces. J. Chem. Phys. 145, 84–104 (2016)

    Article  Google Scholar 

  28. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35, A2096–A2119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39, A2538–A2563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23, 31–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ling, L., Opfer, R., Schaback, R.: Results on meshless collocation techniques. Eng. Anal. Bound. Elem. 30, 247–253 (2006)

    Article  MATH  Google Scholar 

  33. Melenk, J.M., Babu\(\check{\text{s}}\)ka, I., Basic theory and applications: The partition of unity finite element method. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

  34. Oanh, D.T., Davydov, O., Phu, H.X: Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Preprint (2016)

  35. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236, 575–588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.08.006

  37. Rossini, M.: Interpolating functions with gradient discontinuities via variably scaled kernels. Dolom. Res. Notes Approx. 11, 3–14 (2018)

    Article  MathSciNet  Google Scholar 

  38. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. J. Sci. Comput. 64, 341–367 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Santin, G., Haasdonk, B.: Convergence rate of the data-independent \(P\)-greedy algorithm in kernel-based approximation. In: Dolomites Research Notes on Approximation, vol. 10, pp. 68–78. Special issue (2017)

  40. Sarra, S.A.: The Matlab radial basis function toolbox. J. Open Res. Softw. 5, 1–10 (2017)

    Article  Google Scholar 

  41. Sarra, S.A., Bay, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Preprint (2017)

  42. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of 23-rd National Conference, Brandon/Systems Press, Princeton, pp. 517–524 (1968)

  43. Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45, 333–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71, 185–200 (2016)

    Article  MathSciNet  Google Scholar 

  45. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)

    MATH  Google Scholar 

  46. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Chui, C.K. (ed.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt University Press, Nashville (2002)

    Google Scholar 

  47. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the reviewers for their insightful comments. This research has been accomplished within Rete ITaliana di Approssimazione (RITA) and supported by GNCS-IN\(\delta \)AM. The first author was partially supported by the research project Approximation by radial basis functions and polynomials: applications to CT, MPI and PDEs on manifolds, No. DOR1695473. The third author was partially supported by the research project Radial basis functions approximations: stability issues and applications, No. BIRD167404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Perracchione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Marchi, S., Martínez, A., Perracchione, E. et al. RBF-Based Partition of Unity Methods for Elliptic PDEs: Adaptivity and Stability Issues Via Variably Scaled Kernels. J Sci Comput 79, 321–344 (2019). https://doi.org/10.1007/s10915-018-0851-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0851-2

Keywords

Mathematics Subject Classification

Navigation