Abstract
We propose two schemes [AVF(2) and AVF(4)] for Maxwell’s equations, by discretizing the Hamiltonian formulation with Fourier pseudospectral method for spatial discretization and average vector field method for time integration. Both AVF(2) and AVF(4) hold the two Hamiltonian energies automatically, while being energy-, momentum- and divergence-preserving, unconditionally stable, non-dissipative and spectral accurate. Rigorous error estimates are obtained for the proposed schemes. The numerical dispersion relations are also investigated. Numerical experiments support well the theoretical analysis results. The proposed schemes are valid for the regular domain, but invalid for the domain with complex geometries.
Similar content being viewed by others
References
Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)
Liu, Y.: Fourier analysis of numerical algorithms for the Maxwell equations. J. Comput. Phys. 124, 396–416 (1996)
Namiki, T.: A new FDTD algorithm based on alternating direction implicit method. IEEE Trans. Microw. Theory Tech. 47, 2003–2007 (1999)
Zheng, F., Chen, Z., Zhang, J.: Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000)
Zhao, A.: Analysis of the numerical dispersion of the 2-Dalternating-direction implicit FDTD method. IEEE Trans. Microw. Theory Tech. 50, 1156–1164 (2002)
Diamanti, N., Giannopoulos, A.: Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models. J. Appl. Geophys. 67, 309–317 (2009)
Chen, W.B., Li, X.J., Liang, D.: Energy-conserved splitting finite-difference time-domain methods for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal. 48, 1530–1554 (2010)
Chen, W.B., Li, X.J., Liang, D.: Energy-conserved splitting FDTD methods for Maxwell’s equations. Numer. Math. 108, 445–485 (2008)
Liang, D., Yuan, Q.: The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell’s equations. J. Comput. Phys. 243, 344–364 (2013)
Anderson, N., Arthurs, A.M.: Helicity and variational principles for Maxwell’s equations. Int. J. Electron. 54, 861–864 (1983)
Marsden, J.E., Weinstein, A.: The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4, 394–406 (1982)
Sha, W., Huang, Z.X., Wu, X.L., Chen, M.S.: Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation. J. Comput. Phys. 225, 33–50 (2007)
Cai, J.X., Wang, Y.S., Wang, B., Jiang, B.: New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell’s equations. J. Math. Phys. 47(123508), 1–16 (2006)
Sun, Y., Tse, P.S.P.: Symplectic and multisymplectic numerical methods for Maxwell’s equations. J. Comput. Phys. 230, 2076–2094 (2011)
Zhu, H.J., Song, S.H., Chen, Y.M.: Multi-symplectic wavelet collocation method for Maxwell’s equations. Adv. Appl. Math. Mech. 3, 663–688 (2011)
Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41(045206), 1–7 (2008)
McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1046 (1999)
McLachlan, R.I., Quispel, G.R.W., Turner, G.S.: Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35, 586–599 (1998)
Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)
Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Energy-preserving integrators and the structure of B-series. Found Comput. Math. 10, 673–693 (2010)
Cieśliński, J.L.: Improving the accuracy of the AVF method. J. Comput. Appl. Math. 259, 233–243 (2014)
Celledoni, E., Grimm, V., McLaren, R.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Perserving energy resp. dissipation in numerical PDEs using the ”Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)
Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)
Zhong, Z.Y., Jin, S., Markowich, P.A., Sparber, C., Zheng, C.X.: A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208, 761–789 (2005)
Liu, Q.H.: The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15, 158–165 (1997)
Liu, Q.H.: Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm. IEEE Trans. Geosci. Remote Sens. 37, 917–926 (1999)
Hesthaven, J., Warburton, T.: High-order nodal methods on unstructured grids, Part I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 1–34 (2002)
Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approximation of Maxwell’s equations, in Discontinuous Galerkin Methods. In: Cockburn, B., Karniadakis, G., Shu, C.W. (eds.) Theory, computation and applications. Lecture notes computer science engineering, vol. 11, pp. 355–361. Springer, Berlin (2000)
Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179–1214 (2002)
Guo, B.Y., Ma, H.P.: The Fourier pseudospectral method for three-dimensional vorticity equations. Acta Math. Appl. Sin. 4, 55–68 (1988)
Lee, J., Fornberg, B.: A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158, 485–505 (2003)
Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)
Gao, L.P., Zhang, B.: Optimal error estimates and modified energy conservation identities of the ADI-FDTD scheme on staggered grids for 3D Maxwell’s equations. Sci. Chin. Math. 56, 1705–1726 (2013)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer-Verlag, Berlin, Heidelberg (2007)
Acknowledgments
The authors would like to express sincere gratitude to the referees for their insightful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by the National Natural Science Foundation of China (11201169, 41231173 and 11271195) and the Graduate Education Innovation Project of Jiangsu Province of China (CXLX13_366).
Rights and permissions
About this article
Cite this article
Cai, J., Wang, Y. & Gong, Y. Numerical Analysis of AVF Methods for Three-Dimensional Time-Domain Maxwell’s Equations. J Sci Comput 66, 141–176 (2016). https://doi.org/10.1007/s10915-015-0016-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0016-5