[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Finite Element Analysis in Fluid Mechanics

  • Chapter
  • First Online:
Mathematical Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 154))

  • 1532 Accesses

Abstract

In the last decades, the finite element method (FEM) in fluid mechanics applications has gained substantial momentum. FE analysis was initially introduced to solid mechanics. However, the progress in fluid mechanics problems was slower due to the non-linearities of the equations and inherent difficulties of the classical FEM to deal with instabilities in the solution of these problems. The main goal of this review is to analyze FEM and provide the theoretical basis of the approach mainly focusing on parabolic type of problems applied in fluid mechanics. Initially, we analyze the basics of FEM for the Stokes problem and we provide theorems for uniqueness and error estimates of the solution. We further discuss FE approaches for the solution of the advection–diffusion equation such as the stabilized FEM, the variational multiscale method, and the discontinuous Galerkin method. Finally, we extend the analysis on the non-linear Navier–Stokes equations and introduce recent FEM advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Akrivis, M. Crouzeix, C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82(4), 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Araya, E. Behrens, R. Rodríguez, An adaptive stabilized finite element scheme for the advection–reaction–diffusion equation. Appl. Numer. Math. 54(3–4), 491–503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.H. Argyris, S. Kelsey, Energy Theorems and Structural Analysis, vol. 960 (Springer, Berlin, 1960)

    Book  Google Scholar 

  4. D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Ayuso, L.D. Marini, Discontinuous galerkin methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal. 47(2), 1391–1420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Bazilevs, K. Takizawa, T.E. Tezduyar, Computational Fluid-structure Interaction: Methods and Applications (Wiley, Chichester, 2013)

    Book  MATH  Google Scholar 

  9. Y. Bazilevs, K. Takizawa, T.E. Tezduyar, New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math. Models Methods Appl. Sci. 25(12), 2217–2226 (2015). https://doi.org/10.1142/S0218202515020029. https://www.worldscientific.com/doi/abs/10.1142/S0218202515020029

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bercovier, O. Pironneau, Error estimates for finite element method solution of the stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979). https://doi.org/10.1007/BF01399555

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bergam, C. Bernardi, Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74(251), 1117–1138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Bernardi, R. Verfürth, A posteriori error analysis of the fully discretized time-dependent stokes equations. ESAIM Math. Model. Numer. Anal. 38(3), 437–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.B. Bochev, M.D. Gunzburger, J.N. Shadid, Stability of the SUPG finite element method for transient advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 193(23–26), 2301–2323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Borker, C. Farhat, R. Tezaur, A discontinuous galerkin method with Lagrange multipliers for spatially-dependent advectiondiffusion problems. Comput. Methods Appl. Mech. Eng. 327, 93–117 (2017). https://doi.org/10.1016/j.cma.2017.08.024

    Article  Google Scholar 

  15. S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 (Springer Science & Business Media, New York, 2007)

    Google Scholar 

  16. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 (Springer Science & Business Media, New York, 2012)

    MATH  Google Scholar 

  17. F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, G. Rog, A relationship between stabilized finite element methods and the galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992). https://doi.org/10.1016/0045-7825(92)90102-p

    Article  MathSciNet  MATH  Google Scholar 

  18. A.N. Brooks, T.J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Burman, A. Ern, Continuous interior penalty h-finite element methods for advection and advection-diffusion equations. Math. Comput. 76(259), 1119–1140 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Cangiani, E.H. Georgoulis, S. Metcalfe, Adaptive discontinuous galerkin methods for nonstationary convection–diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Chatzipantelidis, R. Lazarov, V. Thomée, Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Methods Partial Differ. Equ. 20(5), 650–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Chen, J. Li, W. Qiu, Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36(1), 437–462 (2015)

    MathSciNet  MATH  Google Scholar 

  23. E.T. Chung, B. Engquist, Optimal discontinuous galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Chung, C.S. Lee, A staggered discontinuous galerkin method for the convection–diffusion equation. J. Numer. Math. 20(1), 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. E.T. Chung, W.T. Leung, A sub-grid structure enhanced discontinuous galerkin method for multiscale diffusion and convection-diffusion problems. Commun. Comput. Phys. 14(2), 370–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Cockburn, G.E. Karniadakis, C.W. Shu (eds.), Discontinuous Galerkin Methods (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-642-59721-3

    MATH  Google Scholar 

  27. B. Cockburn, B. Dong, J. Guzmán, M. Restelli, R. Sacco, A hybridizable discontinuous galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998). https://doi.org/10.1016/s0045-7825(97)00206-5

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Codina, Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations, in BAIL 2010-Boundary and Interior Layers, Computational and Asymptotic Methods (Springer, Berlin, 2011), pp. 85–97

    Google Scholar 

  30. M. Crouzeix, P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations I. Revue française d’automatique informatique recherche opérationnelle. Mathématique 7(R3), 33–75 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Dawson, R. Kirby, Solution of parabolic equations by backward Euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.O. Deville, P.F. Fischer, E.H. Mund, High-order Methods for Incompressible Fluid Flow, vol. 9 (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  33. J. Du, E. Chung, An adaptive staggered discontinuous galerkin method for the steady state convection–diffusion equation. J. Sci. Comput., 77(3), 1490–1518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Ern, J. Proft, A posteriori discontinuous galerkin error estimates for transient convection–diffusion equations. Appl. Math. Lett. 18(7), 833–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Ern, A.F. Stephansen, M. Vohralík, Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Ferrer, R. Willden, A high order discontinuous galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46(1), 224–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. L.P. Franca, C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123(1–4), 299–308 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. L.P. Franca, G. Hauke, A. Masud, Revisiting stabilized finite element methods for the advectivediffusive equation. Comput. Methods Appl. Mech. Eng. 195(13–16), 1560–1572 (2006). https://doi.org/10.1016/j.cma.2005.05.028

    Article  MATH  Google Scholar 

  40. G. Fu, W. Qiu, W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49(1), 225–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Gao, J. Ouyang, P. Dai, W. Zhou, A coupled continuous and discontinuous finite element method for the incompressible flows. Int. J. Numer. Methods Fluids 84(8), 477–493 (2017)

    Article  MathSciNet  Google Scholar 

  42. E.H. Georgoulis, E. Hall, P. Houston, Discontinuous galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput. 30(1), 246–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. E.H. Georgoulis, O. Lakkis, J.M. Virtanen, A posteriori error control for discontinuous galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49(2), 427–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Heinrich, P. Huyakorn, O. Zienkiewicz, A. Mitchell, An upwindfinite element scheme for two-dimensional convective transport equation. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)

    Article  MATH  Google Scholar 

  46. J.G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    MATH  Google Scholar 

  47. P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Huang, X. Feng, Y. He, An efficient two-step algorithm for the incompressible flow problem. Adv. Comput. Math. 41(6), 1059–1077 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. T.J. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Hughes, A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows, ed. by T.J.R. Hughes (ASME, New York, 1979), pp. 19–35

    Google Scholar 

  51. T.J. Hughes, J.R. Stewart, A space-time formulation for multiscale phenomena. J. Comput. Appl. Math. 74(1–2), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. T.J. Hughes, T. Tezduyar, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45(1–3), 217–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. T.J. Hughes, L.P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    MATH  Google Scholar 

  54. T.J. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Article  MATH  Google Scholar 

  55. T.J. Hughes, G.R. Feijoo, L. Mazzei, J.B. Quincy, The variational multiscale method–a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). https://doi.org/10.1016/s0045-7825(98)00079-6

    Article  MathSciNet  MATH  Google Scholar 

  56. T.J.R. Hughes, G. Scovazzi, L.P. Franca, Multiscale and Stabilized Methods, chap. 2. (American Cancer Society, New York, 2004). https://doi.org/10.1002/0470091355.ecm051. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470091355.ecm051

  57. F. Karakatsani, C. Makridakis, A posteriori estimates for approximations of time-dependent stokes equations. IMA J. Numer. Anal. 27(4), 741–764 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Kemmochi, On the finite element approximation for non-stationary saddle-point problems. Jpn. J. Ind. Appl. Math., 35(2), 423–439 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. C.M. Klaij, J.J. van der Vegt, H. van der Ven, Space–time discontinuous galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Kwack, A. Masud, A stabilized mixed finite element method for shear-rate dependent non-Newtonian fluids: 3d benchmark problems and application to blood flow in bifurcating arteries. Comput. Mech. 53(4), 751–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. O. Lakkis, C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. M.G. Larson, A. Målqvist, A posteriori error estimates for mixed finite element approximations of parabolic problems. Numer. Math. 118(1), 33–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  65. G.R. Liu, N.T. Trung, Smoothed Finite Element Methods (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  66. G. Liu, G.X. Xu, A gradient smoothing method (GSM) for fluid dynamics problems. Int. J. Numer. Methods Fluids 58(10), 1101–1133 (2008)

    Article  MATH  Google Scholar 

  67. I. Lomtev, G.E. Karniadakis, A discontinuous galerkin method for the Navier–Stokes equations. Int. J. Numer. Methods Fluids 29(5), 587–603 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. C. Makridakis, R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41(4), 1585–1594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Marchandise, J.F. Remacle, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219(2), 780–800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Masud, R. Calderer, A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput. Mech. 44(2), 145–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Masud, R. Calderer, A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200(33–36), 2577–2593 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Masud, R. Khurram, A multiscale/stabilized finite element method for the advectiondiffusion equation. Comput. Methods Appl. Mech. Eng. 193(21–22), 1997–2018 (2004). https://doi.org/10.1016/j.cma.2003.12.047

    Article  MATH  Google Scholar 

  73. A. Masud, R. Khurram, A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195(13–16), 1750–1777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Masud, J. Kwack, A stabilized mixed finite element method for the first-order form of advection–diffusion equation. Int. J. Numer. Methods Fluids 57(9), 1321–1348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Masud, J. Kwack, A stabilized mixed finite element method for the incompressible shear-rate dependent non-Newtonian fluids: variational multiscale framework and consistent linearization. Comput. Methods Appl. Mech. Eng. 200(5–8), 577–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  76. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Nithiarasu, R. Codina, O. Zienkiewicz, The characteristic-based split (cbs) schemea unified approach to fluid dynamics. Int. J. Numer. Methods Eng. 66(10), 1514–1546 (2006)

    Article  MATH  Google Scholar 

  78. R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation (Springer, Berlin, 2009), pp. 409–542

    Book  MATH  Google Scholar 

  79. E. Oate, Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Comput. Methods Appl. Mech. Eng. 151(1–2), 233–265 (1998). https://doi.org/10.1016/s0045-7825(97)00119-9

    MathSciNet  Google Scholar 

  80. A.K. Pandare, H. Luo, A hybrid reconstructed discontinuous galerkin and continuous galerkin finite element method for incompressible flows on unstructured grids. J. Comput. Phys. 322, 491–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. P.O. Persson, J. Bonet, J. Peraire, Discontinuous galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198(17–20), 1585–1595 (2009)

    Article  MATH  Google Scholar 

  82. S.S. Rao, The Finite Element Method in Engineering (Butterworth-Heinemann, Burlington, 2017)

    Google Scholar 

  83. G. Sangalli, Robust a-posteriori estimator for advection-diffusion-reaction problems. Math. Comput. 77(261), 41–70 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Sendur, A. Nesliturk, Bubble-based stabilized finite element methods for time-dependent convection–diffusion–reaction problems. Int. J. Numer. Methods Fluids 82(8), 512–538 (2016)

    Article  MathSciNet  Google Scholar 

  85. L.T. Tenek, J. Argyris, Finite Element Analysis for Composite Structures, vol. 59 (Springer Science & Business Media, New York, 2013)

    MATH  Google Scholar 

  86. T.E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, in Advances in Applied Mechanics, vol. 28 (Elsevier, London, 1991), pp. 1–44

    Google Scholar 

  87. T. Tezduyar, T. Hughes, Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA, 1982

    Google Scholar 

  88. T. Tezduyar, S. Mittal, R. Shih, Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 87(2–3), 363–384 (1991)

    Article  MATH  Google Scholar 

  89. T.E. Tezduyar, S. Mittal, S. Ray, R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)

    Article  MATH  Google Scholar 

  90. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, New York, 2006)

    MATH  Google Scholar 

  91. D. Turner, K. Nakshatrala, K. Hjelmstad, A stabilized formulation for the advection–diffusion equation using the generalized finite element method. Int. J. Numer. Methods Fluids 66(1), 64–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. R. Verfürth, Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1783–1802 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  93. R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  94. J. Wu, D. Liu, X. Feng, P. Huang, An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 21–33 (2017)

    MathSciNet  MATH  Google Scholar 

  95. G.X. Xu, E. Li, V. Tan, G. Liu, Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM). Comput. Struct. 90, 131–144 (2012)

    Article  Google Scholar 

  96. J. Yao, G. Liu, A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics. Comput. Mech. 54(4), 999–1012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  97. L. Zhu, D. Schötzau, A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations. IMA J. Numer. Anal. 31(3), 971–1005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  98. O. Zienkiewicz, P. Nithiarasu, R. Codina, M. Vazquez, P. Ortiz, The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int. J. Numer. Methods Fluids 31(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail A. Xenos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raptis, A., Kyriakoudi, K., Xenos, M.A. (2019). Finite Element Analysis in Fluid Mechanics. In: Rassias, T., Pardalos, P. (eds) Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-030-31339-5_18

Download citation

Publish with us

Policies and ethics