Abstract
In the last decades, the finite element method (FEM) in fluid mechanics applications has gained substantial momentum. FE analysis was initially introduced to solid mechanics. However, the progress in fluid mechanics problems was slower due to the non-linearities of the equations and inherent difficulties of the classical FEM to deal with instabilities in the solution of these problems. The main goal of this review is to analyze FEM and provide the theoretical basis of the approach mainly focusing on parabolic type of problems applied in fluid mechanics. Initially, we analyze the basics of FEM for the Stokes problem and we provide theorems for uniqueness and error estimates of the solution. We further discuss FE approaches for the solution of the advection–diffusion equation such as the stabilized FEM, the variational multiscale method, and the discontinuous Galerkin method. Finally, we extend the analysis on the non-linear Navier–Stokes equations and introduce recent FEM advancements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
G. Akrivis, M. Crouzeix, C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82(4), 521–541 (1999)
R. Araya, E. Behrens, R. Rodríguez, An adaptive stabilized finite element scheme for the advection–reaction–diffusion equation. Appl. Numer. Math. 54(3–4), 491–503 (2005)
J.H. Argyris, S. Kelsey, Energy Theorems and Structural Analysis, vol. 960 (Springer, Berlin, 1960)
D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)
D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)
B. Ayuso, L.D. Marini, Discontinuous galerkin methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal. 47(2), 1391–1420 (2009)
F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)
Y. Bazilevs, K. Takizawa, T.E. Tezduyar, Computational Fluid-structure Interaction: Methods and Applications (Wiley, Chichester, 2013)
Y. Bazilevs, K. Takizawa, T.E. Tezduyar, New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math. Models Methods Appl. Sci. 25(12), 2217–2226 (2015). https://doi.org/10.1142/S0218202515020029. https://www.worldscientific.com/doi/abs/10.1142/S0218202515020029
M. Bercovier, O. Pironneau, Error estimates for finite element method solution of the stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979). https://doi.org/10.1007/BF01399555
A. Bergam, C. Bernardi, Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74(251), 1117–1138 (2005)
C. Bernardi, R. Verfürth, A posteriori error analysis of the fully discretized time-dependent stokes equations. ESAIM Math. Model. Numer. Anal. 38(3), 437–455 (2004)
P.B. Bochev, M.D. Gunzburger, J.N. Shadid, Stability of the SUPG finite element method for transient advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 193(23–26), 2301–2323 (2004)
R. Borker, C. Farhat, R. Tezaur, A discontinuous galerkin method with Lagrange multipliers for spatially-dependent advectiondiffusion problems. Comput. Methods Appl. Mech. Eng. 327, 93–117 (2017). https://doi.org/10.1016/j.cma.2017.08.024
S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 (Springer Science & Business Media, New York, 2007)
F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 (Springer Science & Business Media, New York, 2012)
F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, G. Rog, A relationship between stabilized finite element methods and the galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992). https://doi.org/10.1016/0045-7825(92)90102-p
A.N. Brooks, T.J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)
E. Burman, A. Ern, Continuous interior penalty h-finite element methods for advection and advection-diffusion equations. Math. Comput. 76(259), 1119–1140 (2007)
A. Cangiani, E.H. Georgoulis, S. Metcalfe, Adaptive discontinuous galerkin methods for nonstationary convection–diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2013)
P. Chatzipantelidis, R. Lazarov, V. Thomée, Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Methods Partial Differ. Equ. 20(5), 650–674 (2004)
H. Chen, J. Li, W. Qiu, Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36(1), 437–462 (2015)
E.T. Chung, B. Engquist, Optimal discontinuous galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)
E. Chung, C.S. Lee, A staggered discontinuous galerkin method for the convection–diffusion equation. J. Numer. Math. 20(1), 1–32 (2012)
E.T. Chung, W.T. Leung, A sub-grid structure enhanced discontinuous galerkin method for multiscale diffusion and convection-diffusion problems. Commun. Comput. Phys. 14(2), 370–392 (2013)
B. Cockburn, G.E. Karniadakis, C.W. Shu (eds.), Discontinuous Galerkin Methods (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-642-59721-3
B. Cockburn, B. Dong, J. Guzmán, M. Restelli, R. Sacco, A hybridizable discontinuous galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)
R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998). https://doi.org/10.1016/s0045-7825(97)00206-5
R. Codina, Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations, in BAIL 2010-Boundary and Interior Layers, Computational and Asymptotic Methods (Springer, Berlin, 2011), pp. 85–97
M. Crouzeix, P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations I. Revue française d’automatique informatique recherche opérationnelle. Mathématique 7(R3), 33–75 (1973)
C. Dawson, R. Kirby, Solution of parabolic equations by backward Euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (1999)
M.O. Deville, P.F. Fischer, E.H. Mund, High-order Methods for Incompressible Fluid Flow, vol. 9 (Cambridge University Press, Cambridge, 2002)
J. Du, E. Chung, An adaptive staggered discontinuous galerkin method for the steady state convection–diffusion equation. J. Sci. Comput., 77(3), 1490–1518 (2018)
K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)
A. Ern, J. Proft, A posteriori discontinuous galerkin error estimates for transient convection–diffusion equations. Appl. Math. Lett. 18(7), 833–841 (2005)
A. Ern, A.F. Stephansen, M. Vohralík, Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)
E. Ferrer, R. Willden, A high order discontinuous galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46(1), 224–230 (2011)
L.P. Franca, C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123(1–4), 299–308 (1995)
L.P. Franca, G. Hauke, A. Masud, Revisiting stabilized finite element methods for the advectivediffusive equation. Comput. Methods Appl. Mech. Eng. 195(13–16), 1560–1572 (2006). https://doi.org/10.1016/j.cma.2005.05.028
G. Fu, W. Qiu, W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49(1), 225–256 (2015)
P. Gao, J. Ouyang, P. Dai, W. Zhou, A coupled continuous and discontinuous finite element method for the incompressible flows. Int. J. Numer. Methods Fluids 84(8), 477–493 (2017)
E.H. Georgoulis, E. Hall, P. Houston, Discontinuous galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput. 30(1), 246–271 (2007)
E.H. Georgoulis, O. Lakkis, J.M. Virtanen, A posteriori error control for discontinuous galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49(2), 427–458 (2011)
J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)
J. Heinrich, P. Huyakorn, O. Zienkiewicz, A. Mitchell, An upwindfinite element scheme for two-dimensional convective transport equation. Int. J. Numer. Methods Eng. 11(1), 131–143 (1977)
J.G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)
P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)
P. Huang, X. Feng, Y. He, An efficient two-step algorithm for the incompressible flow problem. Adv. Comput. Math. 41(6), 1059–1077 (2015)
T.J. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)
T. Hughes, A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows, ed. by T.J.R. Hughes (ASME, New York, 1979), pp. 19–35
T.J. Hughes, J.R. Stewart, A space-time formulation for multiscale phenomena. J. Comput. Appl. Math. 74(1–2), 217–229 (1996)
T.J. Hughes, T. Tezduyar, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45(1–3), 217–284 (1984)
T.J. Hughes, L.P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)
T.J. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)
T.J. Hughes, G.R. Feijoo, L. Mazzei, J.B. Quincy, The variational multiscale method–a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). https://doi.org/10.1016/s0045-7825(98)00079-6
T.J.R. Hughes, G. Scovazzi, L.P. Franca, Multiscale and Stabilized Methods, chap. 2. (American Cancer Society, New York, 2004). https://doi.org/10.1002/0470091355.ecm051. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470091355.ecm051
F. Karakatsani, C. Makridakis, A posteriori estimates for approximations of time-dependent stokes equations. IMA J. Numer. Anal. 27(4), 741–764 (2006)
G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)
T. Kemmochi, On the finite element approximation for non-stationary saddle-point problems. Jpn. J. Ind. Appl. Math., 35(2), 423–439 (2018)
C.M. Klaij, J.J. van der Vegt, H. van der Ven, Space–time discontinuous galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)
J. Kwack, A. Masud, A stabilized mixed finite element method for shear-rate dependent non-Newtonian fluids: 3d benchmark problems and application to blood flow in bifurcating arteries. Comput. Mech. 53(4), 751–776 (2014)
O. Lakkis, C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)
M.G. Larson, A. Målqvist, A posteriori error estimates for mixed finite element approximations of parabolic problems. Numer. Math. 118(1), 33–48 (2011)
G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method (CRC Press, Boca Raton, 2002)
G.R. Liu, N.T. Trung, Smoothed Finite Element Methods (CRC Press, Boca Raton, 2016)
G. Liu, G.X. Xu, A gradient smoothing method (GSM) for fluid dynamics problems. Int. J. Numer. Methods Fluids 58(10), 1101–1133 (2008)
I. Lomtev, G.E. Karniadakis, A discontinuous galerkin method for the Navier–Stokes equations. Int. J. Numer. Methods Fluids 29(5), 587–603 (1999)
C. Makridakis, R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41(4), 1585–1594 (2003)
E. Marchandise, J.F. Remacle, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219(2), 780–800 (2006)
A. Masud, R. Calderer, A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput. Mech. 44(2), 145–160 (2009)
A. Masud, R. Calderer, A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200(33–36), 2577–2593 (2011)
A. Masud, R. Khurram, A multiscale/stabilized finite element method for the advectiondiffusion equation. Comput. Methods Appl. Mech. Eng. 193(21–22), 1997–2018 (2004). https://doi.org/10.1016/j.cma.2003.12.047
A. Masud, R. Khurram, A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195(13–16), 1750–1777 (2006)
A. Masud, J. Kwack, A stabilized mixed finite element method for the first-order form of advection–diffusion equation. Int. J. Numer. Methods Fluids 57(9), 1321–1348 (2008)
A. Masud, J. Kwack, A stabilized mixed finite element method for the incompressible shear-rate dependent non-Newtonian fluids: variational multiscale framework and consistent linearization. Comput. Methods Appl. Mech. Eng. 200(5–8), 577–596 (2011)
N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)
P. Nithiarasu, R. Codina, O. Zienkiewicz, The characteristic-based split (cbs) schemea unified approach to fluid dynamics. Int. J. Numer. Methods Eng. 66(10), 1514–1546 (2006)
R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation (Springer, Berlin, 2009), pp. 409–542
E. Oate, Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Comput. Methods Appl. Mech. Eng. 151(1–2), 233–265 (1998). https://doi.org/10.1016/s0045-7825(97)00119-9
A.K. Pandare, H. Luo, A hybrid reconstructed discontinuous galerkin and continuous galerkin finite element method for incompressible flows on unstructured grids. J. Comput. Phys. 322, 491–510 (2016)
P.O. Persson, J. Bonet, J. Peraire, Discontinuous galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198(17–20), 1585–1595 (2009)
S.S. Rao, The Finite Element Method in Engineering (Butterworth-Heinemann, Burlington, 2017)
G. Sangalli, Robust a-posteriori estimator for advection-diffusion-reaction problems. Math. Comput. 77(261), 41–70 (2008)
A. Sendur, A. Nesliturk, Bubble-based stabilized finite element methods for time-dependent convection–diffusion–reaction problems. Int. J. Numer. Methods Fluids 82(8), 512–538 (2016)
L.T. Tenek, J. Argyris, Finite Element Analysis for Composite Structures, vol. 59 (Springer Science & Business Media, New York, 2013)
T.E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, in Advances in Applied Mechanics, vol. 28 (Elsevier, London, 1991), pp. 1–44
T. Tezduyar, T. Hughes, Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA, 1982
T. Tezduyar, S. Mittal, R. Shih, Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 87(2–3), 363–384 (1991)
T.E. Tezduyar, S. Mittal, S. Ray, R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, New York, 2006)
D. Turner, K. Nakshatrala, K. Hjelmstad, A stabilized formulation for the advection–diffusion equation using the generalized finite element method. Int. J. Numer. Methods Fluids 66(1), 64–81 (2011)
R. Verfürth, Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1783–1802 (2005)
R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005)
J. Wu, D. Liu, X. Feng, P. Huang, An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 21–33 (2017)
G.X. Xu, E. Li, V. Tan, G. Liu, Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM). Comput. Struct. 90, 131–144 (2012)
J. Yao, G. Liu, A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics. Comput. Mech. 54(4), 999–1012 (2014)
L. Zhu, D. Schötzau, A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations. IMA J. Numer. Anal. 31(3), 971–1005 (2010)
O. Zienkiewicz, P. Nithiarasu, R. Codina, M. Vazquez, P. Ortiz, The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int. J. Numer. Methods Fluids 31(1), 359–392 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Raptis, A., Kyriakoudi, K., Xenos, M.A. (2019). Finite Element Analysis in Fluid Mechanics. In: Rassias, T., Pardalos, P. (eds) Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-030-31339-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-31339-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31338-8
Online ISBN: 978-3-030-31339-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)