Abstract
In this paper, we study a posteriori estimates for different numerical methods of diffusion problems with discontinuous coefficients on anisotropic meshes, in particular, which can be applied to vertex-centered and cell-centered finite volume, finite difference and piecewise linear finite element methods. Based on the stretching ratios of the mesh elements, we improve a posteriori estimates developed by Vohralík (J Sci Comput 46:397–438, 2011), which are reliable and efficient on isotropic meshes but fail on anisotropic ones (see the numerical results of the paper). Without the assumption that the meshes are shape-regular, the resulting mesh-dependent error estimators are shown to be reliable and efficient with respect to the error measured either as the energy norm of the difference between the exact and approximate solutions, or as a dual norm of the residual, as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution. In other words, they are equivalent to the estimates of Vohralík in the case of isotropic meshes and proved to be robust on anisotropic meshes as well. Based on \(\mathbf{H}(\mathrm {div})\)-conforming, locally conservative flux reconstruction, we suggest two different constructions of the equilibrated flux with the anisotropy of mesh, which is essential to the robustness of our estimates on anisotropic meshes. Numerical experiments in 2D confirm that our estimates are reliable and efficient on anisotropic meshes.
Similar content being viewed by others
References
Afif, M., Bergam, A., Mghazli, Z., Verfürth, R.: A posteriori estimators for the finite volume discretization of an elliptic equation. Numer. Algorithms 34, 127–136 (2003)
Afif, M., Amaziane, B., Kunert, G., Mghazli, Z., Nicaise, S.: A posteriori error estimation for a finite volume discretization on anisotropic meshes. J. Sci. Comput. 43, 183–200 (2010)
Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)
Angermann, L.: Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems. Computing 55, 305–323 (1995)
Apel, T., Nicaise, S., Sirch, D.: A posteriori error estimation of residual type for anisotropic diffusion–convection–reaction problems. J. Comput. Appl. Math. 235, 2805–2820 (2011)
Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64, 943–972 (1995)
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7–32 (1985)
Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85, 579–608 (2000)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47, 2132–2156 (2009)
Chaillou, A.L., Suri, M.: Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng. 196, 210–224 (2006)
Chaillou, A.L., Suri, M.: A posteriori estimation of the linearization error for strongly monotone nonlinear operators. J. Comput. Appl. Math. 205, 72–87 (2007)
Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. ESAIM Proc. 24, 77–96 (2008)
Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24, 443–462 (2002)
Dörfler, W., Wilderotter, O.: An adaptive finite element method for a linear elliptic equation with variable coefficients. Z. Angew. Math. Mech. 80, 481–491 (2000)
El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200, 2782–2795 (2011)
Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math. 234, 114–130 (2010)
Ern, A., Vohralík, M.: Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. C. R. Math. Acad. Sci. Paris 347, 441–444 (2009)
Grosman, S.: The Robustness of the Hierarchical a Posteriori Error Estimator for Reaction–Diffusion Equation on Anisotropic Meshes. SFB393-Preprint 2, Technische Universität Chemnitz, SFB 393 (Germany) (2004)
Grosman, S.: An equilibrated residual method with a computable error approximation for a singularly perturbed reaction–diffusion problem on anisotropic finite element meshes. ESAIM Math. Model. Numer. Anal. 40, 239–267 (2006)
Kunert, G.: A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Logos Verlag, Berlin (1999). Also PhD thesis, TU Chemnitz. http://archiv.tu-chemnitz.de/pub/1999/0012/index.html
Kunert, G.: An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86, 471–490 (2000)
Kunert, G.: A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39, 668–689 (2001)
Kunert, G., Nicaise, S.: Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes. ESAIM. Math. Model. Numer. Anal. 37, 1013–1043 (2003)
Kunert, G., Verfürth, R.: Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86, 283–303 (2000)
Mackenzie, J.A., Mayers, D.F., Mayfield, A.J.: Error estimates and mesh adaption for a cell vertex finite volume scheme. Notes Numer. Fluid Mech. 44, 290–310 (1993)
Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)
Picasso, M.: An anisotropic error indicator based on Zienkiewicz–Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24, 1328–1355 (2003)
Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269 (1947)
Repin, S.I.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 4. de Gruyter, Berlin (2008)
Roberts, J.E., Thomas, J.M.: Mixed and Hybrid Methods. North-Holland, Amsterdam (1991)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley, Stuttgart (1996)
Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)
Vohralík, M.: On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space \(H^1\). Numer. Funct. Anal. Optim. 26, 925–952 (2005)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reactiion equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)
Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46, 397–438 (2011)
Acknowledgments
We would like to thank the anonymous referee for his helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by National Natural Science Foundation of China (No. 11371331, 11101414, 11471329 and 91130026).
Rights and permissions
About this article
Cite this article
Zhao, J., Chen, S., Zhang, B. et al. Robust a Posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients on Anisotropic Meshes. J Sci Comput 64, 368–400 (2015). https://doi.org/10.1007/s10915-014-9937-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9937-7
Keywords
- A posteriori error estimates
- Anisotropic meshes
- Finite volume method
- Finite difference method
- Finite element method
- Discontinuous coefficients