[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems

Ausgewogene a posteriori Fehlerabschätzungen für Finite-Volumen-Diskretisierungen von konvektionsdominierten elliptischen Problemen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The paper describes computable local a posteriori error estimates for the numerical solution of convection-dominated boundary-value problems. Being applied to singularly perturbed elliptic equations, the obtained estimates are uniform w.r.t. the small parameter. Moreover, if quadrature errors are neglected the numerical approximation of the theoretical error bounds preserves the relation signs in the estimates.

Zusammefassung

Die Arbeit beschreibt berechenbare lokale a posteriori Fehlerabschätzungen für die numerischen Lösung konvektionsdominanter Randwertaufgaben. Bei Anwendung auf singulär gestörte Gleichungen erweisen sich die gewonnenen Abschätzungen als gleichmäßig bzgl. des kleinen Parameters. Wird ferner der Quadraturfehler vernachlässigt, konserviert die numerische Approximation der theoretischen Schranken die Relationszeichen in den Abschätzungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ainsworth, M., Oden, J. T.: A posteriori error estimator for second order elliptic systems. Part I. The theoretical foundations and a posteriori error analysis. Comput. Math. Appl.25, 101–113 (1993).

    Article  Google Scholar 

  2. Ainsworth, M., Oden, J. T.: The unified approach to a posteriori error estimation using element residual methods. Numer Math.65, 23–50 (1993).

    Article  MathSciNet  Google Scholar 

  3. Angermann, L.: Computable estimation of error indicators associated with local boundary value problems. Informationen der TU Dresden 07-04-91, TU Dresen, 1991.

  4. Angermann, L.: An a-posteriori estimation for the solution of elliptic boundary value problems by means of upwind FEM. IMA J. Numer. Anal.12, 201–215 (1992).

    Google Scholar 

  5. Angermann, L.: Error estimates for the finite-element solution of an elliptic singularly perturbed problem. IMAA J. Numer. Anal.15, 161–196 (1995).

    Google Scholar 

  6. Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computation. SIAM J. Numer. Anal.15, 736–754 (1978).

    Article  Google Scholar 

  7. Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comp.60, 167–188 (1993).

    Google Scholar 

  8. Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order. Berlin, Heidelberg, New York, Tokyo: Springer, 1983.

    Google Scholar 

  9. Vacek, J.: Dual variational principles for an elliptic defferential equation. Aplikace Matematiky,21, 5–27 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angermann, L. Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems. Computing 55, 305–323 (1995). https://doi.org/10.1007/BF02238485

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238485

AMS Subject Classifications

Key words

Navigation