Abstract
This paper discusses second-order cone tensor eigenvalue complementarity problem. We reformulate second-order cone tensor eigenvalue complementarity problem as two constrained polynomial optimizations. For these two reformulated optimizations, Lasserre-type semidefinite relaxation methods are proposed to compute all second-order cone tensor complementarity eigenpairs. The proposed algorithms terminate when there are finitely many second-order cone complementarity eigenvalues. Numerical examples are reported to show the efficiency of the proposed algorithms.
Similar content being viewed by others
References
Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)
Chen, Z., Qi, L.: A semismooth Newton method for tensor eigenvalue complementarity problem. Comput. Optim. Appl. 65, 109–126 (2016)
Chen, Z., Yang, Q., Ye, L.: Generalized eigenvalue complementarity problem for tensors. Pac. J. Optim. 13, 527–545 (2017)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Curto, R., Fialkow, L.: Truncated K-moment problems in several variables. J. Oper. Theory 54, 189–226 (2005)
Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)
Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)
Fan, J., Nie, J., Zhao, R.: The maximum tensor complementarity eigenvalues. Optim. Methods Softw. (2018). https://doi.org/10.1080/10556788.2018.1528251
Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Program. 170, 507–539 (2018)
Fukushima, M., Luo, Z., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)
Helton, J., Nie, J.: A semidefinite approach for truncated K-moment problems. Found. Comput. Math. 12, 851–881 (2012)
Henrion, D., Lasserre, J., Lofberg, Y.: GloptiPoly 3: moments, optimization and semidfinite programming. Optim. Methods Softw. 24, 761–779 (2009)
Hou, J., Ling, C., He, H.: A class of second-order cone eigenvalue complementarity problems for higher-order tensors. J. Oper. Res. Soc. China 5, 45–64 (2017)
Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)
Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
Lasserre, J.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)
Lasserre, J.: Introduction to Polynomial and Semi-algebraic Optimization. Cambridge University Press, Cambridge (2015)
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer, Berlin (2009)
Laurent, M.: Optimization over polynomials: selected topics. In: Proceedings of the International Congress of Mathematicians, Seoul (2014)
Ling, C., He, H., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim. Appl. 63, 143–168 (2016)
Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. 142, 485–510 (2013)
Nie, J.: Polynomial optimization with real varieties. SIAM J. Optim. 23, 1634–1646 (2013)
Nie, J., Yang, Z., Zhang, X.: A complete semidefinite algorithm for detecting copositive matrices and tensors. SIAM J. Optim. 28, 2902–2921 (2018)
Nie, J., Zhang, X.: Real eigenvalues of nonsymmetric tensors. Comput. Optim. Appl. 70, 1–32 (2018)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Sturm, J.: Sedumi 1.02: a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)
Xu, F., Ling, C.: Some properties on Pareto-eigenvalues of higher-order tensors. Oper. Res. Trans. 19, 34–41 (2015)
Yu, G., Song, Y., Xu, Y., Yu, Z.: Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems. Numer. Algorithms 80, 1181–1201 (2019)
Zhao, X., Fan, J.: A semidefinite method for tensor complementarity problems. Optim. Methods Softw. 34, 758–769 (2019)
Acknowledgements
Xinzhen Zhang was partially supported by the National Natural Science Foundation of China (Grant Nos. 11871369 and 12071343). Guyan Ni was partially supported by the National Natural Science Foundation of China (Grant No. 11871472).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cheng, L., Zhang, X. & Ni, G. A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems. J Glob Optim 79, 715–732 (2021). https://doi.org/10.1007/s10898-020-00954-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-020-00954-4