[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Preprocessing algorithm and tightening constraints for multiperiod blend scheduling: cost minimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

While a range of models have been proposed for the multiperiod blend scheduling problem (MBSP), solving even medium-size MBSP instances remains challenging due to the presence of bilinear terms and binary variables. To address this challenge, we develop solution methods for MBSP focusing on the cost minimization objective. We develop a novel preprocessing algorithm to calculate lower bounds on stream flows. We define product dedicated flow variables to address product specific features involved in MBSP. Bounds on stream flows and new product dedicated flow variables are then used to generate tightening constraints which significantly improve the solution time of the mixed integer nonlinear programming models as well as models based on linear approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( j \in {\mathbf{J}} \) :

Blenders

\( p \in {\mathbf{P}} \) :

Products

\( q \in {\mathbf{Q}} \) :

Properties

\( s \in {\mathbf{S}} \) :

Streams

\( t \in {\mathbf{T}} \) :

Time points/periods

\( {\mathbf{S}}_{p,q}^{\text{U}} \) :

Streams that satisfy the upper bound on property q for product p

\( {\mathbf{S}}_{p,q}^{\text{L}} \) :

Streams that satisfy the lower bound on property q for product p

\( {\mathbf{Q}}_{s,p}^{\text{S}} \) :

Properties for which stream s is the only stream that satisfies the specification for product p

\( {\mathbf{Q}}_{p}^{\text{M}} \) :

Properties for which multiple (but not all) streams satisfy the specification for product p

\( {\mathbf{Q}}^{\text{L}} \) :

Properties that have lower bounding specification

\( {\mathbf{Q}}^{\text{U}} \) :

Properties that have upper bounding specification

\( \gamma_{s}^{\text{S}} \) :

Inventory capacity for stream s

\( \gamma_{j}^{\text{J}} \) :

Inventory capacity for blender j

\( \gamma_{p}^{\text{P}} \) :

Inventory capacity for product p

\( \delta_{p,t} \) :

Amount of product p due at time point t

\( \xi_{s,t} \) :

Supply for stream s at time point t

\( \sigma_{s,q} \) :

Value of property q for stream s

\( \sigma_{p,q}^{\text{U}} \) :

Upper bounding specification on property q for product p

\( \sigma_{p,q}^{\text{L}} \) :

Lower bounding specification on property q for product p

\( \hat{\sigma }_{p,q}^{\text{U}} \) :

Value of property q that violates the upper bound for product p by the least margin

\( \hat{\sigma }_{p,q}^{\text{L}} \) :

Value of property q that violates the lower bound for product p by the least margin

\( \theta_{p,q} \) :

Value of property q of product p

\( \omega_{p} \) :

Cumulative demand for product p

\( \hat{\omega }_{s,p} \) :

Demand for stream s derived from product p

\( \bar{\omega }_{s,p,q} \) :

Demand for stream s derived from property q of product p

\( \bar{\omega }_{s,p,q}^{'} \) :

Updated demand for stream s derived from property q of product p

\( C_{q,j,t} \) :

Value of property q of the inventory in blender j during time period t

\( \tilde{F}_{s,j,t} \) :

Flow of stream s fed into blender \( j \) at time point t

\( F_{j,j',t} \) :

Flow from blender \( j \) to blender \( j' \) at time point t

\( \bar{F}_{j,p,t} \) :

Flow from blender \( j \) to product p at time point t

\( F_{j,j',t}^{S} \) :

Flow of stream s from blender \( j \) to blender \( j' \) at time point t

\( \bar{F}_{s,j,p,t}^{S} \) :

Flow of stream s from blender \( j \) to product p at time point t

\( \hat{F}_{s,p} \) :

Flow of stream s dedicated to product \( p \)

\( I_{j,t} \) :

Inventory in blender j during time period t

\( I_{s,j,t}^{S} \) :

Inventory of stream s in blender j during time period t

\( \hat{I}_{s,t} \) :

Inventory of stream s during time period t

\( \bar{I}_{p,t} \) :

Inventory of product p during time period t

\( R_{{j,j^{\prime},t}}^{\text{J}} \) :

Split fraction between flow from blender j to blender j’ at time point t and inventory of blender j at time period \( t \)

\( R_{j,p,t}^{\text{P}} \) :

Split fraction between flow from blender j to product p at time point t and inventory of blender j at time period \( t \)

\( \tilde{X}_{s,j,t} \) :

= 1 when stream s is fed into blender j at time point t

\( X_{j,j',t} \) :

= 1 when blender j feeds blender j’ at time point t

\( \bar{X}_{j,p,t} \) :

= 1 when blender j is sends product p at time point t

References

  1. Baker, T.E., Lasdon, L.S.: Successive linear programming at exxon. Manag. Sci. 31(3), 264–274 (1985). https://doi.org/10.1287/mnsc.31.3.264

    Article  MATH  Google Scholar 

  2. Baltean-Lugojan, R., Misener, R.: Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0577-y

    Article  MATH  Google Scholar 

  3. Blom, M.L., Burt, C.N., Pearce, A.R., Stuckey, P.J.: A decomposition-based heuristic for collaborative scheduling in a network of open-pit mines. INFORMS J. Comput. 26(4), 658–676 (2014). https://doi.org/10.1287/ijoc.2013.0590

    Article  MathSciNet  MATH  Google Scholar 

  4. Blom, M.L., Pearce, A.R., Stuckey, P.J.: A decomposition-based algorithm for the scheduling of open-pit networks over multiple time periods. Manag. Sci. 62(10), 3059–3084 (2016). https://doi.org/10.1287/mnsc.2015.2284

    Article  Google Scholar 

  5. Burkard, R.E., Hatzl, J.: Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Comput. Chem. Eng. 29(8), 1752–1769 (2005). https://doi.org/10.1016/J.COMPCHEMENG.2005.02.037

    Article  Google Scholar 

  6. Castillo, P.A., Mahalec, V.: Inventory pinch based, multiscale models for integrated planning and scheduling-part I: gasoline blend planning. AIChE J. (2014). https://doi.org/10.1002/aic.14423

    Article  Google Scholar 

  7. Castillo, P.A., Mahalec, V.: Inventory pinch based, multiscale models for integrated planning and scheduling-Part II: gasoline blend scheduling. AIChE J. 60(7), 2475–2497 (2014)

    Article  Google Scholar 

  8. Castillo, P.A., Castillo, V.M., Kelly, J.D.: Inventory pinch algorithm for gasoline blend planning. AIChE J. 59(10), 3748–3766 (2013). https://doi.org/10.1002/aic.14113

    Article  Google Scholar 

  9. Castro, P.M.: New MINLP formulation for the multiperiod pooling problem. AIChE J. 61(11), 3728–3738 (2015). https://doi.org/10.1002/aic.15018

    Article  Google Scholar 

  10. Castro, P.M., Grossmann, I.E.: Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind. Eng. Chem. Res. (2014). https://doi.org/10.1021/ie503002k

    Article  Google Scholar 

  11. Ceccon, F., Kouyialis, G., Misener, R.: Using functional programming to recognize named structure in an optimization problem: application to pooling. AIChE J. 62(9), 3085–3095 (2016). https://doi.org/10.1002/aic.15308

    Article  Google Scholar 

  12. Cerdá, J., Pautasso, P.C., Cafaro, D.C.: A cost-effective model for the gasoline blend optimization problem. AIChE J. 62(9), 3002–3019 (2016). https://doi.org/10.1002/aic.15208

    Article  Google Scholar 

  13. D’Ambrosio, C., Linderoth, J., Luedtke, J.: Valid inequalities for the pooling problem with binary variables. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatorial Optimization, pp. 117–129. Springer, Berlin (2011)

    Google Scholar 

  14. DeWitt, C.W., Lasdon, L.S., Waren, A.D., Brenner, D.A., Melhem, S.A.: OMEGA: an improved gasoline blending system for texaco. Interfaces (1989). https://doi.org/10.2307/25061187

    Article  Google Scholar 

  15. Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise–linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009). https://doi.org/10.1021/ie8016048

    Article  Google Scholar 

  16. Greenberg, H.J.: Analyzing the pooling problem. ORSA J. Comput. 7(2), 205–217 (1995). https://doi.org/10.1287/ijoc.7.2.205

    Article  MATH  Google Scholar 

  17. Gupte, A., Ahmed, S., Cheon, M.S., Dey, S.: Solving mixed integer bilinear problems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013). https://doi.org/10.1137/110836183

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim. 67(3), 631–669 (2017). https://doi.org/10.1007/s10898-016-0434-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Haugland, D.: An overview of models and solution methods for pooling problems. In: Bjørndal, E., Bjørndal, M., Pardalos, P.M., Rönnqvis, M. (eds.) Energy, Natural Resources and Environmental Economics, pp. 459–469. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12067-1_26

    Chapter  Google Scholar 

  20. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25(December), 19–28 (1978). https://doi.org/10.1145/1111237.1111238

    Article  Google Scholar 

  21. Janak, S.L., Floudas, C.A.: Improving unit-specific event based continuous-time approaches for batch processes: integrality gap and task splitting. Comput. Chem. Eng. 32(4–5), 913–955 (2008). https://doi.org/10.1016/J.COMPCHEMENG.2007.03.019

    Article  Google Scholar 

  22. Kelly, J.D., Mann, J.L.: Crude oil blend scheduling optimization: an application with multimillion dollar benefits—part 2. Hydrocarb. Process. 82, 47–54 (2003)

    Google Scholar 

  23. Kelly, J.D., Menezes, B.C., Grossmann, I.E.: Successive LP approximation for nonconvex blending in MILP scheduling optimization using factors for qualities in the process industry. Ind. Eng. Chem. Res. 57(32), 11076–11093 (2018). https://doi.org/10.1021/acs.iecr.8b01093

    Article  Google Scholar 

  24. Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013). https://doi.org/10.1007/s10898-012-0022-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. (2013). https://doi.org/10.1016/j.compchemeng.2013.01.016

    Article  Google Scholar 

  26. Li, J., Misener, R., Floudas, C.A.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012). https://doi.org/10.1002/aic.12623

    Article  Google Scholar 

  27. Lotero, I., Trespalacios, F., Grossmann, I.E., Papageorgiou, D.J., Cheon, M.S.: An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comput. Chem. Eng. (2016). https://doi.org/10.1016/j.compchemeng.2015.12.017

    Article  Google Scholar 

  28. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665

    Article  MATH  Google Scholar 

  29. Merchan, A.F., Lee, H., Maravelias, C.T.: Discrete-time mixed-integer programming models and solution methods for production scheduling in multistage facilities. Comput. Chem. Eng. 94(November), 387–410 (2016). https://doi.org/10.1016/J.COMPCHEMENG.2016.04.034

    Article  Google Scholar 

  30. Merchan, A.F., Velez, S., Maravelias, C.T.: Tightening methods for continuous-time mixed-integer programming models for chemical production scheduling. AIChE J. 59(12), 4461–4467 (2013). https://doi.org/10.1002/aic.14249

    Article  Google Scholar 

  31. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006). https://doi.org/10.1002/aic.10717

    Article  Google Scholar 

  32. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136(1), 155–182 (2012). https://doi.org/10.1007/s10107-012-0555-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011). https://doi.org/10.1016/J.COMPCHEMENG.2011.01.026

    Article  Google Scholar 

  35. Neiro, Sérgio M.S., Murata, V.V., Pinto, J.M.: Hybrid time formulation for diesel blending and distribution scheduling. Ind. Eng. Chem. Res. 53(44), 17124–17134 (2014). https://doi.org/10.1021/ie5009103

    Article  Google Scholar 

  36. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, Martin W.P.: Fixed-charge transportation with product blending. Transp. Sci. 46(2), 281–295 (2012). https://doi.org/10.1287/trsc.1110.0381

    Article  Google Scholar 

  37. Reddy, P.C.P., Karimi, I.A., Srinivasan, R.: Novel solution approach for optimizing crude oil operations. AIChE J. 50(6), 1177–1197 (2004). https://doi.org/10.1002/aic.10112

    Article  Google Scholar 

  38. Velez, S., Maravelias, C.T.: Mixed-integer programming model and tightening methods for scheduling in general chemical production environments. Ind. Eng. Chem. Res. 52(9), 3407–3423 (2013). https://doi.org/10.1021/ie302741b

    Article  Google Scholar 

  39. Velez, S., Maravelias, C.T.: Reformulations and branching methods for mixed-integer programming chemical production scheduling models. Ind. Eng. Chem. Res. 52(10), 3832–3841 (2013). https://doi.org/10.1021/ie303421h

    Article  Google Scholar 

  40. Velez, S., Sundaramoorthy, A., Maravelias, C.T.: Valid inequalities based on demand propagation for chemical production scheduling MIP models. AIChE J. 59(3), 872–887 (2013). https://doi.org/10.1002/aic.14021

    Article  Google Scholar 

  41. Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008). https://doi.org/10.1002/aic.11425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos T. Maravelias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Maravelias, C.T. Preprocessing algorithm and tightening constraints for multiperiod blend scheduling: cost minimization. J Glob Optim 77, 603–625 (2020). https://doi.org/10.1007/s10898-020-00882-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00882-3

Keywords

Navigation