Abstract
In this paper, we present the derivation of the multiparametric disaggregation technique (MDT) by Teles et al. (J. Glob. Optim., 2011) for solving nonconvex bilinear programs. Both upper and lower bounding formulations corresponding to mixed-integer linear programs are derived using disjunctive programming and exact linearizations, and incorporated into two global optimization algorithms that are used to solve bilinear programming problems. The relaxation derived using the MDT is shown to scale much more favorably than the relaxation that relies on piecewise McCormick envelopes, yielding smaller mixed-integer problems and faster solution times for similar optimality gaps. The proposed relaxation also compares well with general global optimization solvers on large problems.
Similar content being viewed by others
References
Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)
Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)
Bagajewicz, M.: A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 24(9–10), 2093–2113 (2000)
Jeżowski, J.: Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 49(10), 4475–4516 (2010)
Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)
Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19(12), 1219–1242 (1995)
Tawarmalani, M., Sahinidis, N. V.: Convexification and global optimization in continuous and mixed-integer nonlinear programming. Kluwer, Dordrecht, pp. 254–284 (2002)
Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)
Misener, R., Floudas, C.A.: Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)
Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)
Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)
Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2010)
Sherali, H.D., Alameddine, A.: A new reformulation linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)
Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: Abraham, A., Hassanien, A., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence, vol. 3, pp. 153–234. Springer, Heidelberg (2009)
Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36, 161 (2006)
Ruiz, J.P., Grossmann, I.E.: Exploiting vector space properties to strengthen the relaxation of bilinear programs arising in the global optimization of process networks. Optim. Lett. 5, 1 (2011)
Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)
Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)
Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)
Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Kluwer, Dordrecht (1995)
Shor, N.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25(1), 163–168 (1990)
Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116(3), 659–678 (2003)
Yu, N.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9(1–3), 141–160 (1998)
Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84(2), 219–226 (1999)
Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)
Bergamini, M.L., Aguirre, P., Grossmann, I.E.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005)
Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2010)
Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. (in press 2010). doi:10.1007/s10107-009-0295-4
Teles, J.P., Castro, P.M., Matos, H.A.: Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim (2011). doi:10.1007/s10898-011-9809-8
Grossmann, I.E., Ruiz, J.P.: Generalized disjunctive programming: a framework for formulation and alternative algorithms for MINLP optimization. In: Lee, J., Leyffer, S. (eds.) IMA Volume 154, Mixed Integer Nonlinear Programming (2011)
Oral, M., Kettani, O.: A linearization procedure for quadratic and cubic mixed-integer problems. Oper. Res. 40(Suppl 1): S109–S116 (1992) (Optimization)
Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discret. Math. 6, 466–486 (1985)
Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3(3), 227–252 (2002)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 146 (1976)
Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)
Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6(1), 39–76 (1995)
Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM Newslett. 23(3–4) (1988)
IBM. IBM ILOG CPLEX V12.1—User’s Manual for CPLEX, IBM (2009)
Drud, A.S.: CONOPT–A Large-Scale GRG Code. INFORMS J. Comput. 6(2), 207–216 (1994)
Sahinidis, N.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)
Rijckaert, M., Martens, X.: Comparison of generalized geometric programming algoritms. J. Optim. Theory Appl. 26, 205 (1978)
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Vol. 187 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1981)
Shen, P., Zhang, K.: Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150(1), 99–114 (2004)
Kolodziej, S.P.: Global Optimization of the Multiperiod Blend Problem. Master’s Thesis, Carnegie Mellon University, Pittsburgh (2012)
Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A novel global optimization approach to the multiperiod blending problem (Submitted, 2012)
Gurobi Optimizer Reference Manual Version 4.5. Gurobi Optimization. http://www.gurobi.com/doc/45/refman/ (2011)
Sherali, H.D., Adams, W.P., Driscoll, P.J.: Exploiting special structures in constructing a hierarchy of relaxations for 0–1 mixed integer problems. Oper. Res. 46(3), 396–405 (1998)
Misener R., Floudas, C.A.: Global mixed-integer quadratic optimizer. J. Glob. Optim (in press, 2012). DOI:10.1007/s10898-012-9874-7
Acknowledgments
Ignacio Grossmann and Scott Kolodziej acknowledge financial support from the National Science Foundation under Grant OCI-0750826. Pedro Castro gratefully acknowledges financial support from the Luso-American Foundation, under the 2011 Portugal-U.S. Research Networks Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kolodziej, S., Castro, P.M. & Grossmann, I.E. Global optimization of bilinear programs with a multiparametric disaggregation technique. J Glob Optim 57, 1039–1063 (2013). https://doi.org/10.1007/s10898-012-0022-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-0022-1