Abstract
Lead sulfide (PbS), a promising medium-temperature thermoelectric material, is a cheap and excellent substitute for lead pyride. However, its high thermal conductivity limits its thermoelectric properties strongly. In this paper, the nanocomposites with PbS matrix and organic conducting polymer polyparaphenylene (PPP) supplement are introduced to decrease the thermal conductivity by mechanical mixing method. The experimental results show that the thermal conductivity of PbS–PPP nanocomposites significantly decreases and the minimum thermal conductivity is 0.43 W m−1 K−1, which can be obtained when the mass ratio of the PPP is 3% at 773 K. Consequently, the figure of merit (ZT) of PbS–PPP nanocomposites reaches as large as 0.5, which is 52.40% of magnitude higher than that of pure PbS. Therefore, it is an effective way to improve the thermoelectric properties of PbS by introducing the organic conducting polymer PPP. This work may shed light on developing high-performance thermoelectric materials via organic–inorganic nanocomposites at the intermediate temperature range.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
B.Q. Zhou, W. Li, X. Wang, J. Li, L.T. Zheng, B. Gao, X.Y. Zhang, Y.Z. Pei, Sci. China Mater. 62, 379 (2019). https://doi.org/10.1007/s40843-018-9328-5
C.J. Yao, H.L. Zhang, Q.C. Zhang, Polymers (2019). https://doi.org/10.3390/polym11010107
P.P. Murmu, S.V. Chong, J. Storey, S. Rubanov, J. Kennedy, Mater. Today Energy 13, 249 (2019). https://doi.org/10.1016/j.mtener.2019.06.001
P.P. Murmu, J. Kennedy, S. Suman, S.V. Chong, J. Leveneur, J. Storey, S. Rubanov, G. Ramanath, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2018.107549
J. Zhang, Y. Ye, C. Li, J. Yang, H. Zhao, X. Xu, R. Huang, L. Pan, C. Lu, Y. Wang, J. Alloys Compds 696, 1342 (2017). https://doi.org/10.1016/j.jallcom.2016.12.088
M. Presecnik, S. Bernik, J. Alloys Compds 686, 708 (2016). https://doi.org/10.1016/j.jallcom.2016.06.058
V. Siriwongrungson, A. Sakulkalavek, R. Sakdanuphab, J. Mater. Sci. Mater. Electron. 27, 11102 (2016). https://doi.org/10.1007/s10854-016-5227-5
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012). https://doi.org/10.1038/nature11439
H. Wu, J. Carrete, Z. Zhang, Y. Qu, X. Shen, Z. Wang, L.-D. Zhao, J. He, NPG Asia Mater. 6, e108 (2014). https://doi.org/10.1038/am.2014.39
M. Markov, M. Zebarjadi, Nanoscale Microscale Thermophys. Eng. 23, 117 (2019). https://doi.org/10.1080/15567265.2018.1520762
A.G. El-Shamy, Mater. Sci. Semicond. Process. 100, 245 (2019). https://doi.org/10.1016/j.mssp.2019.04.004
K.V. Zakharchuk, M. Widenmeyer, D.O. Alikin, W.J. Xie, S. Populoh, S.M. Mikhalev, A. Tselev, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky, J. Mater. Chem. A 6, 13386 (2018). https://doi.org/10.1039/c8ta01463a
W. Shi, S.Y. Qu, H.Y. Chen, Y.L. Chen, Q. Yao, L.D. Chen, Angew. Chem. Int. Ed. 57, 8037 (2018). https://doi.org/10.1002/anie.201802681
M. Nomura, J. Shiomi, T. Shiga, R. Anufriev, Jpn J. Appl. Phys. (2018). https://doi.org/10.7567/jjap.57.080101
J.J. Liu, Y. Liu, Y.H. Jing, Y.F. Gao, J.Q. Zhao, B. Ouyang, Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2448-2
L.D. Zhao, J. He, S. Hao, C.-I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012). https://doi.org/10.1021/ja306527n
L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011). https://doi.org/10.1021/ja208658w
I. Golovtsov, S. Bereznev, R. Traksmaa, A. Öpik, Thin Solid Films 515, 7712 (2007). https://doi.org/10.1016/j.tsf.2006.11.098
Z.H. Wu, H.Q. Xie, Mater. Res. Innov. 18, 120 (2014). https://doi.org/10.1179/1433075x13y.0000000117
Z.H. Wu, H.Q. Xie, Y.B. Zhai, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4842035
S. Sasaki, T. Yamamoto, T. Kanbara, A. Morita, T. Yamamoto, J. Polym. Sci. B 30, 293 (1992). https://doi.org/10.1002/polb.1992.090300309
D.R. Rueda, M. Cagiao, F.B. Calleja, Polym. Bull. 21, 635 (1989)
H. Ueno, K. Yoshino, Phys. Rev. B 34, 7158 (1986). https://doi.org/10.1103/physrevb.34.7158
H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, J. Appl. Phys. 107, 094308 (2010). https://doi.org/10.1063/1.3388076
X. Hu, J. Hu, X.A. Fan, B. Feng, Z. Pan, P. Liu, Y. Zhang, R. Li, Z. He, G. Li, Y. Li, J. Solid State Chem. 282, 121060 (2020). https://doi.org/10.1016/j.jssc.2019.121060
J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compds 432, 7 (2007). https://doi.org/10.1016/j.jallcom.2006.05.115
A.J. Ahmed, S.M.K. Nazrul Islam, R. Hossain, J. Kim, M. Kim, M. Billah, M.S.A. Hossain, Y. Yamauchi, X. Wang, R. Soc. Open Sci. 6, 90870 (2019). https://doi.org/10.1098/rsos.190870
S. Johnsen, J. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 3460 (2011). https://doi.org/10.1021/ja109138p
H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015). https://doi.org/10.1063/1.4908244
M. Scheele, N. Oeschler, I. Veremchuk, S. Peters, A. Littig, A. Kornowski, C. Klinke, H. Weller, ACS Nano 5, 8541 (2011)
D. Cadavid, M. Ibáñez, S. Gorsse, A.M. López, A. Cirera, J.R. Morante, A. Cabot, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-1328-0
Acknowledgements
This work was supported by the Major Program of the National Natural Science Foundation of China (No. 51590902), the National Natural Science Foundation of China (No. 51676117), the Program for Professor of Special Appointment (Young Eastern Scholar, No. QD2015052) at Shanghai Institutions of Higher Learning, the Key Subject of Shanghai Polytechnic University (Material Science and Engineering, No. XXKZD1601) and Gaoyuan Discipline of Shanghai: Environmental Science and Engineering (Resource Recycling Science and Engineering).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, Y., Lin, J., Xie, H. et al. Raising the thermoelectric performance of PbS with low-content polyparaphenylene. J Mater Sci: Mater Electron 31, 6586–6592 (2020). https://doi.org/10.1007/s10854-020-03214-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-020-03214-z