[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ontology-based module selection in the design of reconfigurable machine tools

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Reconfigurable machine tools (RMTs) are important equipment for enterprises to cope with ever-changing markets because of their flexibility. In design of such equipment, selection of appropriate modules is a very critical decision factor to effectively and efficiently satisfy manufacturing requirements. However, the selection of appropriate modules is a challenging task because it is a multi-domain mapping process relying heavily on experts’ domain knowledge, which is usually unstructured and implicit. To effectively support RMT designers, an ontology-based RMT module selection method is proposed. First, a knowledge base is built by development of an ontology to formally represent the taxonomy, properties, and causal relationships of/among three domain core concepts, namely, machining feature, machining operation, and RMT module involved in RMT design. Second, a four-step sequential procedure is established to facilitate the utilization of encoded knowledge from a knowledge base to aid in the selection of appropriate RMT modules. The procedure takes a given part family as the input, automatically infers the required machining operations as well as the RMT modules through rule-based reasoning, and eventually forms a set of RMT configurations that are capable of machining the part family as the output. Finally, the efficacy of the ontology-based RMT module selection method is demonstrated using a plate family manufacturing example. Results show that the approach is effective to support designers by appropriately and rapidly selecting modules and generating configurations in RMT design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilar, A., Roman-Flores, A., & Huegel, J. C. (2013). Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill. Journal of Manufacturing Systems,32(2), 364–371.

    Article  Google Scholar 

  • Ameri, F., & Patil, L. (2012). Digital manufacturing market: A semantic web-based framework for agile supply chain deployment. Journal of Intelligent Manufacturing,23(5), 1817–1832.

    Article  Google Scholar 

  • Baqai, A., Siadat, A., Dantan, J. Y., & Martin, P. (2008). Use of a manufacturing ontology and function-behaviour-structure approach for the design of a reconfigurable machine tool. International Journal of Product Lifecycle Management,3(2–3), 132–150.

    Article  Google Scholar 

  • Bi, Z. M. (2011). Development and control of a 5-axis reconfigurable machine tool. Journal of Robotics,2011(2), 583072–583081.

    Google Scholar 

  • Bi, Z. M., & Zhang, W. J. (2001). Concurrent optimal design of modular robotic configuration. Journal of Field Robotics,18(2), 77–87.

    Google Scholar 

  • Cao, L., Dolovich, A. T., Schwab, A. L., Herder, J. L., & Zhang, W. J. (2015). Towards a unified design approach for both compliant mechanisms and rigid-body mechanisms: Module optimization. Journal of Mechanical Design,137(12), 122301–122310.

    Article  Google Scholar 

  • Catalano, C. E., Camossi, E., Ferrandes, R., Cheutet, V., & Sevilmis, N. (2009). A product design ontology for enhancing shape processing in design workflows. Journal of Intelligent Manufacturing,20(5), 553–567.

    Article  Google Scholar 

  • Chaube, A., Benyoucef, L., & Tiwari, M. K. (2012). An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system. Journal of Intelligent Manufacturing,23(4), 1141–1155.

    Article  Google Scholar 

  • Chen, L., Xi, F. J., & Macwan, A. (2005). Optimal module selection for preliminary design of reconfigurable machine tools. Journal of Manufacturing Science and Engineering,127(1), 104–115.

    Article  Google Scholar 

  • Chhim, P., Chinnam, R. B., & Sadawi, N. (2017). Product design and manufacturing process based ontology for manufacturing knowledge reuse. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1290-2.

    Article  Google Scholar 

  • Chira, O., Chira, C., Roche, T., Tormey, D., & Brennan, A. (2006). An agent-based approach to knowledge management in distributed design. Journal of Intelligent Manufacturing,17(6), 737–750.

    Article  Google Scholar 

  • Dhupia, J., Powalka, B., Katz, R., & Ulsoy, A. G. (2007). Dynamics of the arch-type reconfigurable machine tool. International Journal of Machine Tools and Manufacture,47(2), 326–334.

    Article  Google Scholar 

  • Fan, L. X., Cai, M. Y., Lin, Y., & Zhang, W. J. (2015). Axiomatic design theory: Further notes and its guideline to applications. International Journal of Materials and Product Technology,51(4), 359–374.

    Article  Google Scholar 

  • Hazelrigg, G. A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization,35(2), 103–120.

    Article  Google Scholar 

  • Hong, H., & Yin, Y. (2016). Ontology-based human–machine integrated design method for ultra-precision grinding machine spindle. Journal of Industrial Information Integration,2, 1–10. https://doi.org/10.1016/j.jii.2016.04.003.

    Article  Google Scholar 

  • Huang, S., Wang, G., Shang, X., & Yan, Y. (2018). Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS). Journal of Intelligent Manufacturing,29(5), 1031–1043.

    Article  Google Scholar 

  • Imran, M., & Young, B. (2015). The application of common logic based formal ontologies to assembly knowledge sharing. Journal of Intelligent Manufacturing,26(1), 139–158.

    Article  Google Scholar 

  • ISO 10303-224 (2006) Part 224: Application protocol: Mechanical product definition for process planning using machining features. Available at: https://www.iso.org/standard/36000.html.

  • Järvenpää, E., Siltala, N., Hylli, O., & Lanz, M. (2018). The development of an ontology for describing the capabilities of manufacturing resources. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1427-6.

    Article  Google Scholar 

  • Landers, R. G., Min, B. K., & Koren, Y. (2001). Reconfigurable machine tools. CIRP Annals,50(1), 269–274.

    Article  Google Scholar 

  • Lorenzer, T., Weikert, S., Bossoni, S., & Wegener, K. (2007). Modeling and evaluation tool for supporting decisions on the design of reconfigurable machine tools. Journal of Manufacturing Systems,26(3–4), 167–177.

    Article  Google Scholar 

  • Montalto, A., Graziosi, S., Bordegoni, M., Di Landro, L., & van Tooren, M. J. L. (2018). An approach to design reconfigurable manufacturing tools to manage product variability: The mass customisation of eyewear. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1436-5.

    Article  Google Scholar 

  • Moon, Y.-M., & Kota, S. (1998). Generalized kinematic modeling of reconfigurable machine tools. Journal of Mechanical Design,124(1), 47–51.

    Article  Google Scholar 

  • Mpofu, K. (2012). Machine morphology in reconfigurable machine tools. Ifac Proceedings Volumes,45(6), 391–398.

    Article  Google Scholar 

  • Mpofu, K., & Tlale, N. (2014). A morphology proposal in commercial-off-the-shelf reconfigurable machine tools. International Journal of Production Research,52(15), 4440–4455.

    Article  Google Scholar 

  • O’Connor, M. (2018). SWRLTap: A development environment for working with SWRL rules in Protégé-OWL. Available at: https://protege.stanford.edu/conference/2007/slides/08.01_OConnor.pdf.

  • Palmer, C., Urwin, E. N., Niknejad, A., Petrovic, D., Popplewell, K., & Young, R. I. M. (2018). An ontology supported risk assessment approach for the intelligent configuration of supply networks. Journal of Intelligent Manufacturing,29(5), 1005–1030.

    Article  Google Scholar 

  • Pérez, R., Molina, A., & Ramírez-Cadena, M. (2014). Development of an integrated approach to the design of reconfigurable micro/mesoscale CNC machine tools. Journal of Manufacturing Science and Engineering,136(3), 031003–031010.

    Article  Google Scholar 

  • Rasovska, I., Chebel-Morello, B., & Zerhouni, N. (2008). A mix method of knowledge capitalization in maintenance. Journal of Intelligent Manufacturing,19(3), 347–359.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York, London: McGraw-Hill International Book Co.

    Google Scholar 

  • Son, H., Choi, H.-J., & Park, H. W. (2010). Design and dynamic analysis of an arch-type desktop reconfigurable machine. International Journal of Machine Tools and Manufacture,50(6), 575–584.

    Article  Google Scholar 

  • Stanford University. (2018). PROTÉGÉ 5.2. Available at: https://protege.stanford.edu/.

  • Suh, N. P. (1990). The principles of design. New York: Oxford University Press.

    Google Scholar 

  • Talhi, A., Fortineau, V., Huet, J.-C., & Lamouri, S. (2017). Ontology for cloud manufacturing based product lifecycle management. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1376-5.

    Article  Google Scholar 

  • Wang, Q., Chen, X., Yin, Y., & Lu, J. (2017). Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine. Enterprise Information Systems,11(7), 1105–1118.

    Article  Google Scholar 

  • Wang, G., Huang, S., Shang, X., Yan, Y., & Du, J. (2016a). Formation of part family for reconfigurable manufacturing systems considering bypassing moves and idle machines. Journal of Manufacturing Systems,41, 120–129. https://doi.org/10.1016/j.jmsy.2016.08.009.

    Article  Google Scholar 

  • Wang, J. W., Wang, H. F., Ding, J. L., Furuta, K., Kanno, T., Ip, W. H., et al. (2016b). On domain modelling of the service system with its application to enterprise information systems. Enterprise Information Systems,10(1), 1–16.

    Article  Google Scholar 

  • Wang, S., Yu, L., Zhou, J., Li, W., Liu, G., & Zhu, H. (1994). The design method of program module for selecting machine tools under CAPP environment. Journal of Shenyang University of Technology (3), 107–113. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGY403.023.htm.

  • Xu, Z., Xi, F., Liu, L., & Chen, L. (2017). A method for design of modular reconfigurable machine tools. Machines,5(1), 1–16.

    Article  Google Scholar 

  • Yang, S. (2002). Manual of machining technologist. Beijing: Machinery Industry Press.

    Google Scholar 

  • Yigit, A. S., & Allahverdi, A. (2003). Optimal selection of module instances for modular products in reconfigurable manufacturing systems. International Journal of Production Research,41(17), 4063–4074.

    Article  Google Scholar 

  • Yin, Y. H., Xie, J. Y., Da Xu, L., & Chen, H. (2012). Imaginal thinking-based human–machine design methodology for the configuration of reconfigurable machine tools. IEEE Transactions on Industrial Informatics,8(3), 659–668.

    Article  Google Scholar 

  • Zapp, M., Singh, M., Zendoia, J., & Brencsics, I. (2012). Collaborative machine tool design environment based on semantic wiki technology. In 13th European conference on knowledge management, ECKM 2012, September 67, 2012 (Vol. 2, pp. 1583–1586). Cartagena, Spain: Academic Conferences Limited.

  • Zhang, Y. (2011). Metal machining manual. Shanghai: Shanghai Science and Technology Press.

    Google Scholar 

  • Zhang, D. (2013). Manual of CNC machining. Beijing: Chemical Industry Press.

    Google Scholar 

  • Zhang, W. J., & van Luttervelt, C. A. (2011). Toward a resilient manufacturing system. CIRP Annals,60(1), 469–472.

    Article  Google Scholar 

  • Zhou, Q., Yan, P., Liu, H., & Xin, Y. (2017). A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis. Journal of Intelligent Manufacturing,6, 1–23.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments on this paper. The authors acknowledge financial support from the National Ministries (JCKY2014602B007), National Natural Science Foundation of China (NSFC 51805033 and 51505032), China Postdoctoral Science Foundation (3030036721802), and Beijing Natural Science Foundation (BJNSF 3172028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, Z., Zeng, C., Wang, G. et al. Ontology-based module selection in the design of reconfigurable machine tools. J Intell Manuf 31, 301–317 (2020). https://doi.org/10.1007/s10845-018-1446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1446-3

Keywords

Navigation