
SWRLTab: A Development
Environment for working with
SWRL Rules In Protégé-OWL

Martin O’Connor
Stanford Medical Informatics, Stanford University

2

Talk Outline

• Introduction to SWRL
• Using SWRL as an OWL query

language
• SWRLTab: a Protégé-OWL

development environment for SWRL

3

Semantic Web Stack

4

Rule-based Systems are common
in many domains

• Engineering: Diagnosis rules
• Commerce: Business rules
• Law: Legal reasoning
• Medicine: Eligibility, Compliance
• Internet: Access authentication

5

Rule Markup (RuleML) Initiative

• Effort to standardize inference rules.
• RuleML is a markup language for publishing

and sharing rule bases on the World Wide
Web.

• Focus is on rule interoperation between
industry standards.

• RuleML builds a hierarchy of rule
sublanguages upon XML, RDF, and OWL,
e.g., SWRL

6

What is SWRL?
• SWRL is an acronym for Semantic Web Rule

Language.
• SWRL is intended to be the rule language of the

Semantic Web.
• SWRL includes a high-level abstract syntax for

Horn-like rules.
• All rules are expressed in terms of OWL

concepts (classes, properties, individuals).
• Language FAQ:

– http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ

7

SWRL Characteristics

• W3C Submission in 2004:
http://www.w3.org/Submission/SWRL/

• Rules saved as part of ontology
• Increasing tool support: Bossam, R2ML,

Hoolet, Pellet, KAON2, RacerPro,
SWRLTab

• Can work with reasoners

8

Example SWRL Rule: Has
uncle

hasParent(?x, ?y) ^ hasBrother(?y, ?z)
→ hasUncle(?x, ?z)

9

Example SWRL Rule with
Named Individuals: Has brother

Person(Fred) ^ hasSibling(Fred, ?s) ^ Man(?s)
→ hasBrother(Fred, ?s)

10

Example SWRL Rule with Literals
and Built-ins: is adult?

Person(?p) ^ hasAge(?p,?age) ^
swrlb:greaterThan(?age,17)

→ Adult(?p)

11

Example SWRL Rule with String
Built-ins

Person(?p) ^ hasNumber(?p, ?number)
^ swrlb:startsWith(?number, "+") →
hasInternationalNumber(?p, true)

12

Example SWRL Rule with Built-in
Argument Binding

Person(?p) ^ hasSalaryInPounds(?p, ?pounds) ^
swrlb:multiply(?dollars, ?pounds, 2.0) ->

hasSalaryInDollars(?p, ?dollars)

13

Example SWRL Rule with Built-in
Argument Binding II

Person(?p) ^ hasSalaryInPounds(?p, ?pounds) ^
swrlb:multiply(2.0, ?pounds, ?dollars) ->

hasSalaryInDollars(?p, ?dollars)

14

Example SWRL Rule with OWL
Restrictions

(hasChild >= 1)(?x) → Parent(?x)

15

Example SWRL Rule with Inferred
OWL Restrictions

Parent(?x) → (hasChild >= 1)(?x)

16

SWRL and Open World Semantics:
sameAs, differentFrom

Publication(?p) ^ hasAuthor(?p, ?y) ^
hasAuthor(?p, ?z) ^ differentFrom(?y, ?z)

→ cooperatedWith(?y, ?z)

17

SWRL is monotonic: does not
Support Negated Atoms

Person(?p) ^ not hasCar(?p, ?c) →
CarlessPerson(?p)

Not possible: language does not support negation here

Potential invalidation: what if a person later gets a car?

18

SWRL is Monotonic: retraction (or
modification) not supported

Person(?p) ^ hasAge(?p,?age) ^
swrlb:add(?newage, ?age,1)
→ hasAge(?p, ?newage)

19

SWRL is Monotonic: retraction (or
modification) not supported

Person(?p) ^ hasAge(?p,?age) ^
swrlb:add(?newage, ?age,1)
→ hasAge(?p, ?newage)

Incorrect: will run forever and attempt to assign an infinite
number of values to hasAge property

Potential invalidation: essentially attempted retraction

20

SWRL is Monotonic: counting not
supported

Publication(?p) ^ hasAuthor(?p,?a) ^
<has exactly one hasAuthor value in

current ontology>
→ SingleAuthorPublication(?p)

Not expressible: open world applies

Potential invalidation: what if author is added later?

21

SWRL is Monotonic: counting not
supported II

Publication(?p) ^ (hasAuthor = 1)(?p)
→ SingleAuthorPublication(?p)

Closure: though best expressed in OWL

22

SWRL Semantics

• Based on OWL-DL
• Has a formal semantics
• Complements OWL and fully semantically

compatible
• More expressive yet at expense of

decidability
• Use OWL if extra expressiveness not

required (possible exception: querying)

23

SWRL and Querying

• SWRL is a rule language, not a query
language

• However, a rule antecedent can be viewed
as a pattern matching specification, i.e., a
query

• With built-ins, language compliant query
extensions are possible

24

Example SWRL Query

Person(?p) ^ hasAge(?p,?age)
^ swrlb:greaterThan(?age,17)
→ query:select(?p, ?age)

25

Ordering Query Results

Person(?p) ^ hasAge(?p,?age)
^ swrlb:greaterThan(?age,17)
→ query:select(?p, ?age) ^

query:orderBy(?age)

26

Counting Query Results

Person(?p) ^ hasCar(?p,?car)
→ query:select(?p) ^

query:count(?car)

Important: no way of asserting count in ontology

27

Count all Owned Cars in Ontology

Person(?p) ^ hasCar(?p, ?c) →
query:count(?c)

28

Count all Cars in Ontology

Car(?c) → query:count(?c)

29

Aggregation Queries: average age of
persons in ontology

• Person(?p) ^ hasAge(?p, ?age) ->
query:avg(?age)

Also: query:max, query:min, query:sum

30

Queries and Rules Can Interact

Person(?p) ^ hasAge(?p,?age)
^ swrlb:greaterThan(?age,17)

→ Adult(?p)

Adult(?a) → query:select(?a)

31

Example SWRL Query with OWL
Restrictions

(hasChild >= 1)(?x) → query:select(?x)

32

All Built-ins can be used in Queries

tbox:isDirectSubClassOf(?subClass, Person) - >
query:select(?subClass)

tbox:isSubPropertyOf(?supProperty, hasName) -
> query:select(?subProperty)

Note: use of property and class names as built-in
arguments in not OWL DL

Important: these built-ins should be used in queries only –
inference with them would definitely not be OWL DL

33

SWRLTab

• A Protégé-OWL development environment
for working with SWRL rules

• Supports editing and execution of rules
• Extension mechanisms to work with third-

party rule engines
• Mechanisms for users to define built-in

method libraries
• Supports querying of ontologies

34

SWRLTab Wiki : http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

35

What is the SWRL Editor?

• The SWRL Editor is an extension to
Protégé-OWL that permits the interactive
editing of SWRL rules.

• The editor can be used to create SWRL
rules, edit existing SWRL rules, and read
and write SWRL rules.

• It is accessible as a tab within Protégé-
OWL.

36

37

38

39

40

Executing SWRL Rules

• SWRL is a language specification
• Well-defined semantics
• Developers must implement engine
• Or map to existing rule engines
• Hence, a bridge…

OWL
KB
+

SWRL

SWRL Rule
Engine Bridge

Data

Knowledge

Rule Engine

SWRL Rule Engine Bridge

GUI

42

SWRL Rule Engine Bridge
• Given an OWL knowledge base it will

extract SWRL rules and relevant OWL
knowledge.

• Also provides an API to assert inferred
knowledge.

• Knowledge (and rules) are described in non
Protégé-OWL API-specific way.

• These can then be mapped to a rule-engine
specific rule and knowledge format.

• This mapping is developer’s responsibility.

43

We used the SWRL Bridge to
Integrate Jess Rule Engine with

Protégé-OWL

• Jess is a Java-based rule engine.
• Jess system consists of a rule base,

fact base, and an execution engine.
• Available free to academic users, for a

small fee to non-academic users
• Has been used in Protégé-based

tools, e.g., JessTab.

44

45

46

47

48

49

Outstanding Issues
• SWRL Bridge does not know about all

OWL restrictions:
– Contradictions with rules possible!
– Consistency must be assured by the user

incrementally running a reasoner.
– Hard problem to solve in general.

• Integrated reasoner and rule engine
would be ideal.

• Possible solution with Pellet, KAON2.

50

SWRL Built-in Bridge

• SWRL provides mechanisms to add user-defined
predicates, e.g.,
Person(?p) ^ hasAge(?p, ?age) ^

swrlb:greaterThanOrEqual(?age, 18) -> Adult(?p)

• These built-ins could be implemented by each
rule engine.

• However, the SWRL Bridge provides a dynamic
loading mechanism for Java-defined built-ins.

• Can be used by any rule engine implementation.

51

Defining a Built-in in Protégé-OWL

• Describe library of built-ins in OWL using
definition of swrl:Builtin provided by SWRL
ontology.

• Provide Java implementation of built-ins
and wrap in JAR file.

• Load built-in definition ontology in Protégé-
OWL. Put JAR in plugins directory.

• Built-in bridge will make run-time links.

52

Example: defining stringEqualIgnoreCase

from Core SWRL Built-ins Library

• Core SWRL built-ins defined by:
– http://www.w3.org/2003/11/swrlb

• Provides commonly needed built-ins, e.g.,
add, subtract, string manipulation, etc.

• Normally aliased as ‘swrlb’.
• Contains definition for stringEqualIgnoreCase

53

package edu.stanford.smi.protegex.owl.swrl.bridge.builtins.swrlb;

import edu.stanford.smi.protegex.owl.swrl.bridge.builtins.*;
import edu.stanford.smi.protegex.owl.swrl.bridge.exceptions.*;

public class SWRLBuiltInLibraryImpl extends SWRLBuiltInLibrary
{

public SWRLBuiltInMethodsImpl() { …}
public void reset() {…}

public boolean stringEqualIgnoreCase(List arguments) throws BuiltInException { ... }
....
} // SWRLBuiltInLibraryImpl

Example Implementation Class for
Core SWRL Built-in Methods

54

Example Implementation for Built-in
swrlb:stringEqualIgnoreCase

public boolean stringEqualIgnoreCase(List<Argument> arguments) throws BuiltInException
{

SWRLBuiltInUtil.checkNumberOfArgumentsEqualTo(2, arguments.size());

String argument1 = SWRLBuiltInUtil.getArgumentAsAString(1, arguments);
String argument2 = SWRLBuiltInUtil.getArgumentAsAString(2, arguments);

return argument1.equalsIgnoreCase(argument2);
} // stringEqualIgnoreCase

55

Invocation from Rule Engine
• Use of swrlb:stringEqualIgnoreCase in rule should

cause automatic invocation.
• SWRL rule engine bridge has an invocation

method.
• Takes built-in name and arguments and

performs method resolution, loading, and
invocation.

• Efficiency a consideration: some methods
should probably be implemented natively by rule
engine, e,g., add, subtract, etc.

56

60

SWRLQueryTab

• Available as part of Protégé-OWL
SWRLTab in current Protégé-3.3.1

• Low-level JDBC-like API for use in
embedded applications

• Can use any existing rule engine back end

61

Other Built-in Libraries

62

SWRLTab Java APIs

• The SWRLTab provides APIs for all
components

• These APIs are accessible to all OWL
Protégé-OWL developers.

• Third party software can use these
APIs to work directly with SWRL rules
and integrate rules into their
applications

• Fully documented in SWRLTab Wiki

63

Future Plans

• Port to Protégé 4
• Integrated reasoner/inference support,

most likely with Pellet
• Dynamic relational-OWL mapping for

inferencing and querying (static already
available with Datamaster)

• SQWRL (‘squirrel’): enhanced query
support – negation, disjunction

