[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Virtual Retina: A biological retina model and simulator, with contrast gain control

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells. We prove the pertinence of our software by reproducing several experimental measurements from single ganglion cells such as cat X and Y cells. This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Under INRIA CeCILL C open-source license, IDDN number IDDN.FR.001.210034.000.S.P.2007.000.31235.

  2. Homepage: http://www-sop.inria.fr/odyssee/software/virtualretina/.

  3. Server address: http://facets.inria.fr/retina/webservice.html, also accessible directly from the software homepage.

  4. Naturally, we do not claim here that all processing up to LGN is already done in the OPL! But functionally, the linear structure of our model is mostly encompassed in this first stage, plus the supplementary linear transient \(T_{w_\mathrm{G},\tau_\mathrm{G}}(t)\) in Eq. (14).

  5. http://facets.kip.uni-heidelberg.de/.

  6. Heuristically, the {α} should correspond to concepts like ‘edges’, ‘textures’, etc. More rigorously, the {α} could be the different parameters of a well-chosen generative model for natural scenes (or movies).

References

  • Baccus, S., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Bálya, D., Roska, B., Roska, T., & Werblin, F. S. (2002). A CNN framework for modeling parallel processing in a mammalian retina. International Journal of Circuit Theory and Applications, 30(2–3), 363–393.

    Article  Google Scholar 

  • Barlow, H. B. (1953). Action potentials from the frog’s retina. Journal of Physiology, 119(1), 58–68.

    PubMed  CAS  Google Scholar 

  • Beaudoin, D. L., Borghuis, B. G., & Demb, J. B. (2007). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. Journal of Neuroscience, 27, 2636–2645.

    Article  PubMed  CAS  Google Scholar 

  • Bernadete, E. A., & Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: Responses to chromatic and achromatic stimuli. Journal of Physiology, 519(3), 775–790.

    Article  Google Scholar 

  • Bernadete, E. A., Kaplan, E., & Knight, B. W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience, 8(5), 483–486.

    Article  Google Scholar 

  • Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America, 94, 5411–5416.

    Article  PubMed  CAS  Google Scholar 

  • Bonin, V., Mante, V., & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience, 25(47), 10844–10856, November.

    Article  PubMed  CAS  Google Scholar 

  • Cai, D., Deangelis, G. C., & Freeman, D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045–1061, August.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Demb, J. B., Mante, V., Tollhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25(46), 10577–10597, November.

    Article  PubMed  CAS  Google Scholar 

  • Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199–213.

    Article  CAS  Google Scholar 

  • Chichilnisky, E. J., & Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. Journal of Neuroscience, 22(7), 2737–2747, April.

    PubMed  CAS  Google Scholar 

  • Connaughton, V. P., & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. European Journal of Neuroscience, 10(4), 1350–1362, April.

    Article  PubMed  CAS  Google Scholar 

  • Croner, L. J., & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35(1), 7–24, January.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D., Packer, O. S., Diller, L., Brainard, D., Peterson, B., & Lee, B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research, 40, 1801–1811.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences, 89, 9666–9670.

    Article  CAS  Google Scholar 

  • Delorme, A., Gautrais, J., VanRullen, R., & Thorpe, S. J. (1999). Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26, 989–996.

    Article  Google Scholar 

  • Demb, J. B., Zaghloul, K., Haarsma, L., & Sterling, P. (2001). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. Journal of Neuroscience, 21(19), 7447–7454, October.

    PubMed  CAS  Google Scholar 

  • Dhingra, N. K., & Smith, R. G. (2004). Spike generator limits efficiency of information transfer in a retinal ganglion cell. Journal of Neuroscience, 24, 2914–2922.

    Article  PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C., & Freeman, A. W. (1987). The receptive-field spatial structure of cat retinal Y cells. Journal of Physiology, 384(1), 49–79.

    PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.

    PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., & Watson, A. B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology, 341, 279–307.

    PubMed  CAS  Google Scholar 

  • Erwin, H. (2004). http://scat-he-g4.sunderland.ac.uk/harryerw/phpwiki/index.php/tonicphasic.

  • Euler, T., & Masland, R. H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology, 83(4), 1817–1829, April.

    PubMed  CAS  Google Scholar 

  • Flores-Herr, N., Protti, D. A., & Wässle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. Journal of Neuroscience, 21(13), 4852–4863, July.

    PubMed  CAS  Google Scholar 

  • Gazeres, N., Borg-Graham, L., & Fregnac, Y. (1998). A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells. Visual Neuroscience, 15, 1157–1174.

    Article  PubMed  CAS  Google Scholar 

  • Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319, 1108–1111. doi:10.1126/science.1149639.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing, 3rd edn. Redwood City: Addison Wesley.

    Google Scholar 

  • Hartveit, E., & Heggelund, P. (1994). Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. Journal of Neurophysiology, 72(3), 1278–1289.

    PubMed  CAS  Google Scholar 

  • Hennig, M. H., Funke, K., & Wörgötter, F. (2002). The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. Journal of Neuroscience, 22(19), 8726–8738, October.

    PubMed  CAS  Google Scholar 

  • Herault, J. (1996). A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing, 12, 113–129.

    Article  Google Scholar 

  • Hérault, J., & Durette, B. (2007). Modeling visual perception for image processing. In F. Sandoval, A. Prieto, J. Cabestany, M. Gra na, (Eds.), Computational and ambient intelligence : 9th international work-conference on artificial neural networks, IWANN 2007 (pp. 662–675). Springer.

  • Hochstein, S., & Shapley, R. M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Journal of Physiology, 262, 265–284.

    PubMed  CAS  Google Scholar 

  • Jacobs, A. L., & Werblin, F. S. (1998). Spatiotemporal patterns at the retinal output. Journal of Neurophysiology, 80(1), 447–451, July.

    PubMed  CAS  Google Scholar 

  • Kaplan, E., & Bernadete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research, 134, 1–18.

    Article  Google Scholar 

  • Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646. Poisson, retina, spike variability.

    Article  PubMed  CAS  Google Scholar 

  • Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, G. T., & Marshak, D. W. (1998). Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proceedings of the Royal Society B, 265(1399), 919–925, May.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, G. T., Theiler, J., George, J. S., Travis, B. J., & Marshak, D. W. (2004). Correlated firing improves stimulus discrimination in a retinal model. Neural Computation, 16, 2261–2291.

    Article  PubMed  Google Scholar 

  • Kim, K. J., & Rieke, F. (2001). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Journal of Neuroscience, 21(1), 287–299, January.

    PubMed  CAS  Google Scholar 

  • Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23(4), 1506–1516, February.

    PubMed  CAS  Google Scholar 

  • Kolb, H., Fernandez, E., & Nelson, R. (2001). Webvision: The organization of the retina and visual system. http://webvision.med.utah.edu/.

  • Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.

    PubMed  CAS  Google Scholar 

  • Lamb, T. D. (1976). Spatial properties of horizontal cell responses in the turtle retina. Journal of Physiology, 263(2), 239–55.

    PubMed  CAS  Google Scholar 

  • Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24(47), 10731–10740.

    Article  PubMed  CAS  Google Scholar 

  • Lohmiller, W., & Slotine, J. J. (1998). On contraction analysis for non-linear systems. Automatica, 34(6), 683–696, June.

    Article  Google Scholar 

  • McMahon, M. J., Lankheet, M. J. M., Lennie, P., & Williams, D. R. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience, 20(5), 2043–2053, March.

    PubMed  CAS  Google Scholar 

  • McMahon, M. J., Packer, O. S., & Dacey, D. M. (2004). The classical receptive field surround of primate Parasol ganglion cells is mediated primarily by a non-GABAergic pathway. Journal of Neuroscience, 24(15), 3736–3745, April.

    Article  PubMed  CAS  Google Scholar 

  • Mahowald, M. A., & Mead, C. (1991). The silicon retina. Scientific American, 264(5), 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Manookin, M., & Demb, J. (2006). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron, 50(3), 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Mao, B. U. Q., Macleish, P. R., & Victor, J. D. (1998). The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Visual Neuroscience, 15(3), 425–438.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, P. Z., & Naka, K. (1972). White-noise analysis of a neuron chain, an application of the Wiener theory. Science, 175(4027), 1276–1278, March.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–886, September.

    Article  PubMed  CAS  Google Scholar 

  • Moisan, M. (2007). http://www.flickr.com/photos/marchelino/.

  • Naka, K. I., & Rushton, W. A. (1967). The generation and spread of s-potentials in fish (cyprinidae). Journal of Physiology, 192(2), 437–61, September.

    PubMed  CAS  Google Scholar 

  • Nawy, S. (2000). Regulation of the On bipolar cell mGluR6 pathway by Ca2+. Journal of Neuroscience, 20(12), 4471.

    PubMed  CAS  Google Scholar 

  • Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–732, February.

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637–650.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, B. J., Isayama, T., Richardson, R., & Berson, D. M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 538(3), 787–802.

    Article  PubMed  CAS  Google Scholar 

  • Polans, A., Baehr, W., & Palczewski, K. (1996). Turned on by Ca2 + ! The physiology and pathology of Ca2 + -binding proteins in the retina. Trends in Neurosciences, 19(12), 547–554, December.

    Article  PubMed  CAS  Google Scholar 

  • Raviola, E., & Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences, 70(6), 1677–1681, June.

    Article  CAS  Google Scholar 

  • Rieke, F. (2001). Temporal contrast adaptation in salamander bipolar cells. Journal of Neuroscience, 21(23), 9445–9454, December.

    PubMed  CAS  Google Scholar 

  • Roska, B., & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410, 583–7, March.

    Article  PubMed  CAS  Google Scholar 

  • Van Rullen, R., & Thorpe, S. (2001). Rate coding versus temporal order coding: What the retina ganglion cells tell the visual cortex. Neural Computing, 13(6), 1255–1283.

    Article  Google Scholar 

  • Schnapf, J. L., Nunn, B. J., Meister, M., & Baylor, D. A. (1990). Visual transduction in cones of the monkey macaca fascicularis. Journal of Physiology, 427(1), 681–713.

    PubMed  CAS  Google Scholar 

  • Shapley, R. M., & Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology, 285(1), 275–298.

    PubMed  CAS  Google Scholar 

  • Shiells, R. A., & Falk, G. (1999). A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. Journal of Physiology, 514(2), 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162, April.

    Article  PubMed  CAS  Google Scholar 

  • Tan, S., Dale, J., & Johnston, A. (2003). Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging, 9, 215–228.

    Article  Google Scholar 

  • Valeton, J. M., & Van Norren, D. (1983). Light adaptation of primate cones : An analysis based on extracellular data. Vision Research, 23(12), 1539–1547.

    Article  PubMed  CAS  Google Scholar 

  • van Hateren, J. H., & Lamb, T. D. (2006). The photocurrent response of human cones is fast and monophasic. BMC Neuroscience, 7(1), 34–41.

    Article  PubMed  Google Scholar 

  • van Hateren, J. H., Rüttiger, L., Sun, H., & Lee, B. B. (2002). Processing of natural temporal stimuli by macaque retinal ganglion cells. Journal of Neuroscience, 22(22), 9945–9960.

    PubMed  Google Scholar 

  • Victor, J. D. (1987). The dynamics of the cat retinal X cell centre. Journal of Physiology, 386(1), 219–246.

    PubMed  CAS  Google Scholar 

  • Werblin, F. S., & Dowling, J. E. (1969). Organization of the retina of the mudpuppy. Journal of Neurophysiology, 32(3), 339–355.

    PubMed  CAS  Google Scholar 

  • Wohrer, A. (2007). Mathematical study of a neural gain control mechanism. Research report 6327, INRIA.

  • Wohrer, A. (2008a). Model and large-scale simulator of a biological retina with contrast gain control. PhD thesis, University of Nice Sophia-Antipolis.

  • Wohrer, A. (2008b). The vertebrate retina: A functional review. Research Report 6532, INRIA, May.

Download references

Acknowledgements

Many thanks to Thierry Viéville for his enthusiasm, and his involvement in defining the early tracks of this research. We are especially thankful to the reviewers, who helped to improve the biological plausibility of this contribution. This work was partially supported by the EC IP project FP6-015879, FACETS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Kornprobst.

Additional information

Action Editor: Alexander Borst

Appendices

Appendix A - Coupling kernel in a layer of cells

Let us comment further the choice of the convolution kernel G σ E τ (x,y,t) to model signal averaging in a layer of cells (see Section 2.1.3). Suppose that a layer of retinal cells, described by the spatially continuous potential V(x,y,t), is linearly driven by an input synaptic current I(x,y,t). Then, V can always be linearly calculated from I, through an impulse response K(x,y,t):

$$V(x,y,t)= K * I(x,y,t),$$
(19)

where symbol * represents spatio-temporal convolution. Because neurons are small ‘RC’ circuits, K is temporally low-pass, with a term in \(\exp(-t/\tau)\). However, the precise expression of K depends on the type of spatial averaging being modeled. There are two effects:

  • Averaging because of the cells’ dendritic spread is well modeled by a static spatial Gaussian kernel, leading to the separable filter

    $$K_{\textrm{dendritic spread}} (x,y,t) = G_\sigma(x,y) \exp(-t/\tau).$$
    (20)
  • Averaging by gap junctions between neighboring cells can be expressed either in a discrete-cell approach (Mahowald and Mead 1991; Herault 1996) or in a continuous setting with Laplacian-like operators (Naka and Rushton 1967; Lamb 1976). Both approaches lead approximately to the same impulse response

    $$K_{\textrm{gap junctions}} (x,y,t) = G_{\displaystyle \sqrt{2\mathcal{G}t}}(x,y) \exp(-t/\tau),$$
    (21)

    where \(\mathcal{G}\) is a constant measuring the two-dimensional density of gap junctions.

One can verify that both Eqs. (20) and (21) are spatio-temporal low-pass filters, with very similar characteristics in the Fourier domain. Filter Eq. (21) is a bit harder to handle mathematically, because of the influence of time t on the spatial Gaussian kernel. For this reason, in this article we model all low-pass effects, including effect of gap junctions, with separable filters like Eq. (20). However, the filtering kernel Eq. (21) is also implemented in Virtual Retina.

Appendix B - Mathematical analysis of the contrast gain control loop

An original contribution in this work was the proposition of a contrast gain control mechanism (Section 2.3) via the differential equation

$$\frac{\displaystyle {dV}}{\displaystyle {dt}}(x,y,t)=I_\mathrm{OPL}(x,y,t) -g_\mathrm{A}(x,y,t) V(x,y,t)$$
(22)

with

$$g_\mathrm{A}(x,y,t) = G_{\sigma_\mathrm{A}} \stackrel{x,y}{*} E_{\tau_\mathrm{A}} \stackrel{t}{*} Q (V) \;\;(x,y,t),$$
(23)
$$Q(V) = g^0_\mathrm{A} + \lambda_\mathrm{A} V^2.$$
(24)

Mathematically, this dynamical system is difficult to study due to its high dimensionality (two variables V and g A , expressed on spatial maps). Thus, in Wohrer (2007), we studied the simplified dynamical system

$$\frac{\displaystyle {dV}}{\displaystyle {dt}}(t)= {A} \cos (\omega t) - V(t)Q(V(t)),$$
(25)

for which we can prove contrast gain control properties. System (25) derives from (22) considering the following assumptions:

  • We considered a sinusoidal stimulation: I OPL(t) = A cos(ωt). This is the simplest way to control both amplitude A (i.e., contrast) and speed of temporal variation ω in the input. Furthermore, sinusoidal stimulation enables direct comparison of our system with linear ones, for which Fourier analysis can be done.

  • We assumed that σ A = 0, so that (25) depends only on time t, and not on any spatial structure (x,y). This choice does not appear too restrictive, especially since contrast gain control is experimentally settled as a temporal property only (see Section 4.2).

  • We consider the asymptotic limit of Eq. (22), when parameter τ A in (23) tends to zero, yielding g A(t) = Q(V Bip(t)). As a consequence, (25) is now a one-dimensional dynamical system, easier to study. The assumption τ A ≃ 0 is justified in the scope of our simulations, for which we chose a small constant τ A = 5 ms, as detailed in Sections 3.2.2 and 4.2.

In Wohrer (2007), we proved general properties of system (25).

First, (25) is a very stable system. Similarly to a simple linear exponential filter, the system (25) forgets its initial condition exponentially fast (Lohmiller and Slotine 1998): All trajectories converge asymptotically to a unique solution V(t) which is \(\frac{2\pi}{\omega}\)-periodic (like the input current).

Furthermore, over one cycle, V(t) reaches a single maximum V max at time t max, and a single minimum V min = − V max at time t min = t max − π/ω. In Wohrer (2007), we studied V max as a measure of the strength of the system’s response to the input current, and ωt max as a measure of the phase of the system’s response to the input current.

By studying V max and t max, we thus provided a description of the system’s behavior according to input frequency and amplitude. This is presented in the following theorem, which shows that (25) acts as a low-pass, gain control system on its input, given suitable assumptions on Q.

Theorem 1

Let V be a solution of (25), with Q an even, convex and strictly positive function. First, we show how Vmax and ωtmax depend on the frequency ω:

  1. (i)

    Low-pass setting

    $$\partial_{\omega}{V_\mathrm{max}}< 0\,\;and\,\;\displaystyle \lim_{\omega \to +\infty} V_\mathrm{max} = 0.$$
  2. (ii)

    Phase delay

    $$\partial_{\omega}{(\omega{t_\mathrm{max}})}> 0\,\;and\,\;\displaystyle \lim_{\omega \to +\infty} \omega{t_\mathrm{max}} = \frac{\pi}{2}\; \textrm{{\rm(}mod $2\pi${\rm)}}.$$

    Second, we show how V max and ωt max depend on the amplitude A:

  3. (iii)

    Growth of V max

    $$\partial_{{A}}{V_\mathrm{max}} > 0\,\;and\,\;\displaystyle \lim_{{A} \to +\infty} V_\mathrm{max} = +\infty.$$
  4. (iv)

    Phase advance

    $$\partial_{{A}}{t_\mathrm{max}} < 0\,\;and\,\;\displaystyle \lim_{{A} \to +\infty} \omega{t_\mathrm{max}} = 0 \; \textrm{(mod $2\pi$)}.$$
  5. (v)

    Under-linearity

    $$\begin{array}{rl} \forall\; (\omega, Q),\;&if\;A\;is\;high\;enough,\;\partial_{{A}}{\frac{V_\mathrm{max}}{{A}}} < 0.\\ &Also,\;\displaystyle \lim_{{A} \to +\infty} \frac{V_\mathrm{max}}{{A}}=0. \end{array}$$

Let us comment those results.

Properties (i) and (ii) show that system (25) acts as a low-pass temporal filter (using a classical linear systems terminology). To understand this, suppose that \(Q(V)=g_\mathrm{A}^0\), i.e., just a constant function. This means having a null feedback strength λ A in Eq. (24). Then, Eq. (25) becomes a simple exponential low-pass filter

$$\dot{V}(t)={A} \cos(\omega t) - g_\mathrm{A}^0 V(t),$$
(26)

whose behavior is well known:

$$V_\mathrm{max} =|\widetilde{H}(\omega)|{A}$$
(27)
$$\omega t_\mathrm{max} =\arg(\widetilde{H}(\omega)),$$
(28)

where \(\widetilde{H}(\omega)=1/(g_\mathrm{A}^0+\textbf{j}\omega)\) is the Fourier transform of the system. One verifies easily that Eqs. (27)–(28) imply that V max tends to 0 (with V max > 0) and ωt max tends to \(\frac{\pi}{2}\) (\(\omega{t_\mathrm{max}}<\frac{\pi}{2}\)), as ω→ + ∞. Properties (i)–(ii) extend these properties in the nonlinear case of (25).

Properties (iii), (iv) and (v) show the apparition of gain control in system (25), as opposed to the linear case (26). In the linear case, Eqs. (27)–(28) give a linear dependence of V max and t max with respect to amplitude A. One has indeed \(\partial_{{A}}{V_\mathrm{max}}=|\widetilde{H}(\omega)|>0\), \(\partial_{{A}}{(V_\mathrm{max}/{A})}=0\) and \(\partial_{{A}}{(\omega t_\mathrm{max})}=0\). In the nonlinear case (25), property (iii) shows that V max is still a growing function of A. However, this growth is now under-linear (property (v)).

Finally, property (iv) shows the phase advance effect, with input amplitude A. This second nonlinear effect corresponds to the definition of contrast gain control in real retinas, as detailed in Section 3.2.2.

Appendix C - Example of an XML configuration file

Figure 12 is a snapshot from an XML definition file used in the simulator (with basis parameters for the X cell modeled in Fig. 5(a)). Various XML nodes – such as contrast gain control or the spiking array – can be present or absent from the file, adapting the simulated model’s complexity in consequence.

Fig. 12
figure 12

Sample XML file used by Virtual Retina to load the architecture and parameters of the used model. This file is highly modular

In particular, a radial scheme can be present or not (here it is useless because a single cell is modeled). The spiking array can either be square, or made of concentric circles following retinal density (as here). In this example file, given the parameters of the circular spiking array, a single spiking cell is present (as used for reproduction of physiological recordings).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohrer, A., Kornprobst, P. Virtual Retina: A biological retina model and simulator, with contrast gain control. J Comput Neurosci 26, 219–249 (2009). https://doi.org/10.1007/s10827-008-0108-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0108-4

Keywords

Navigation