[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Retino-Morphic Hardware System Simulating the Graded and Action Potentials in Retinal Neuronal Layers

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

Abstract

We recently developed a retino-morphic hardware system operating at a frame interval of 5 ms, that was short enough for simulating the graded voltage responses of neurons in the retinal circuit in a quasi-continuous manner. In the present, we made a further progress, by implementing the Izhikevich model so that spatial spike distributions in a ganglion-cell layer can be simulated with millisecond-order timing precision. This system is useful for examining the retinal spike encoding of natural visual scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kolb, H., Nelson, R., Fernandez, E., Jones, B.: WEBVERSION. http://webvision.med.utah.edu/

  2. Demb, J.B., Singer, J.H.: Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1, 263–289 (2015)

    Article  Google Scholar 

  3. Roska, B., Werblin, F.: Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat. Neurosci. 6, 600–608 (2003)

    Article  Google Scholar 

  4. Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319, 1108–1111 (2008)

    Article  Google Scholar 

  5. Zhang, Y., Kim, I.J., Sanes, J.R., Meister, M.: PNAS Plus: the most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc. Natl. Acad. Sci. 109, E2391–E2398 (2012)

    Article  Google Scholar 

  6. Mead, C.A., Mahowald, M.A.: A silicon model of early visual processing. Neural Netw. 1, 91–97 (1988)

    Article  Google Scholar 

  7. Zaghloul, K.A., Boahen, K.: A silicon retina that reproduces signals in the optic nerve. J. Neural Eng. 3, 257–267 (2006)

    Article  Google Scholar 

  8. Kameda, S., Yagi, T.: An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina. IEEE Trans. Neural Netw. 14, 1405–1412 (2003)

    Article  Google Scholar 

  9. Okuno, H., Hasegawa, J., Sanada, T., Yagi, T.: Real-time emulator for reproducing graded potentials in vertebrate retina. IEEE Trans. Biomed. Circ. Syst. 9, 284–295 (2015)

    Article  Google Scholar 

  10. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  11. van Rossum, M.C., O’Brien, B.J., Smith, R.G.: Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89, 2406–2419 (2003)

    Article  Google Scholar 

  12. O’Brien, B.J., Isayama, T., Richardson, R., Berson, D.M.: Intrinsic physiological properties of cat retinal ganglion cells. J. Physiol. 538, 787–802 (2002)

    Article  Google Scholar 

  13. Enroth-Cugell, C., Robson, J.G.: Functional characteristics and diversity of cat retinal ganglion cells. Invest Ophthal. Vis. Sci. 25, 250–267 (1984)

    Google Scholar 

  14. Berry, M.J., Warland, D.K., Meister, M.: The structure and precision of retinal spiketrains. Proc. Natl. Acad. Sci. U.S.A. 94, 5411–5416 (1997)

    Article  Google Scholar 

  15. Mihala, S., Niebur, E.: A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput. 21, 704–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (C), 16K01354 to T.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Yagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kudo, Y., Hayashida, Y., Ishida, R., Okuno, H., Yagi, T. (2016). A Retino-Morphic Hardware System Simulating the Graded and Action Potentials in Retinal Neuronal Layers. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics