Abstract
We recently developed a retino-morphic hardware system operating at a frame interval of 5 ms, that was short enough for simulating the graded voltage responses of neurons in the retinal circuit in a quasi-continuous manner. In the present, we made a further progress, by implementing the Izhikevich model so that spatial spike distributions in a ganglion-cell layer can be simulated with millisecond-order timing precision. This system is useful for examining the retinal spike encoding of natural visual scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kolb, H., Nelson, R., Fernandez, E., Jones, B.: WEBVERSION. http://webvision.med.utah.edu/
Demb, J.B., Singer, J.H.: Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1, 263–289 (2015)
Roska, B., Werblin, F.: Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat. Neurosci. 6, 600–608 (2003)
Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319, 1108–1111 (2008)
Zhang, Y., Kim, I.J., Sanes, J.R., Meister, M.: PNAS Plus: the most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc. Natl. Acad. Sci. 109, E2391–E2398 (2012)
Mead, C.A., Mahowald, M.A.: A silicon model of early visual processing. Neural Netw. 1, 91–97 (1988)
Zaghloul, K.A., Boahen, K.: A silicon retina that reproduces signals in the optic nerve. J. Neural Eng. 3, 257–267 (2006)
Kameda, S., Yagi, T.: An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina. IEEE Trans. Neural Netw. 14, 1405–1412 (2003)
Okuno, H., Hasegawa, J., Sanada, T., Yagi, T.: Real-time emulator for reproducing graded potentials in vertebrate retina. IEEE Trans. Biomed. Circ. Syst. 9, 284–295 (2015)
Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)
van Rossum, M.C., O’Brien, B.J., Smith, R.G.: Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89, 2406–2419 (2003)
O’Brien, B.J., Isayama, T., Richardson, R., Berson, D.M.: Intrinsic physiological properties of cat retinal ganglion cells. J. Physiol. 538, 787–802 (2002)
Enroth-Cugell, C., Robson, J.G.: Functional characteristics and diversity of cat retinal ganglion cells. Invest Ophthal. Vis. Sci. 25, 250–267 (1984)
Berry, M.J., Warland, D.K., Meister, M.: The structure and precision of retinal spiketrains. Proc. Natl. Acad. Sci. U.S.A. 94, 5411–5416 (1997)
Mihala, S., Niebur, E.: A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput. 21, 704–718 (2009)
Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)
Acknowledgments
This research was partly supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (C), 16K01354 to T.Y.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kudo, Y., Hayashida, Y., Ishida, R., Okuno, H., Yagi, T. (2016). A Retino-Morphic Hardware System Simulating the Graded and Action Potentials in Retinal Neuronal Layers. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-46672-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46671-2
Online ISBN: 978-3-319-46672-9
eBook Packages: Computer ScienceComputer Science (R0)