Abstract
This paper encompasses a detailed review of state-of-the-art swarm-based algorithms, with a focus on their applications along with a discussion on the merits and limitations of each algorithm. Further, a recently developed advanced particle swarm optimization (APSO) algorithm is compared with the different state-of-the-art algorithms through solving an electromagnetic inverse problem. Results show that the APSO algorithm outperforms the other algorithms. This research provides a scientific guideline for the comparison of different swarm-based algorithms and their utilization regarding specific applications.
Similar content being viewed by others
References
Bonabeau, E., Dorigo, M., Theraulaz, G.: From Natural to Artificial Swarm Intelligence. Oxford University Press Inc, Oxford (1999)
Chakraborty, A., Kar, A.K.: Swarm Intelligence: A Review of Algorithms. In: Patnaik, S., Yang, X.-S., Nakamatsu, K. (eds.) Nature-Inspired Computing and Optimization: Theory and Applications, pp. 475–494. Springer International Publishing, Cham (2017)
Li, X., Clerc, M.: Swarm Intelligence. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 353–384. Springer International Publishing, Cham (2019)
Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, New York City (2010)
Mitchell, M., Taylor, C.E.: Evolutionary computation: an overview. Annu. Rev. Ecol. Syst. 30(1), 593–616 (1999). https://doi.org/10.1146/annurev.ecolsys.30.1.593
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1975)
Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 127–164. Springer, Boston (2005)
Bäck, T., Hoffmeister, F.: Basic aspects of evolution strategies. Stat. Comput. 4(2), 51–63 (1994). https://doi.org/10.1007/bf00175353
Fogel, D.B.: An overview of evolutionary programming. In: Davis, L.D., De Jong, K., Vose, M.D., Whitley, L.D. (eds.) Evolutionary Algorithms, pp. 89–109. Springer, New York (1999)
Eiben, A.E., Smith, J.E.: Evolutionary programming. In: Introduction to Evolutionary Computing, pp. 89–99. Springer, Berlin (2003)
Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy. https://ci.nii.ac.jp/naid/10016599043/en/ (1992)
Fan, Y., Wang, G., Lu, X., Wang, G.: Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands. PLoS ONE 14(12), e0226204 (2020). https://doi.org/10.1371/journal.pone.0226204
Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 227–263. Springer, Boston (2010)
Hansford, D.: Mob Mentality. No. 123
Yang, Q., et al.: Adaptive multimodal continuous ant colony optimization. IEEE Trans. Evol. Comput. 21(2), 191–205 (2017). https://doi.org/10.1109/TEVC.2016.2591064
Zhang, D., You, X., Liu, S., Yang, K.: Multi-colony ant colony optimization based on generalized Jaccard similarity recommendation strategy. IEEE Access 7, 157303–157317 (2019). https://doi.org/10.1109/ACCESS.2019.2949860
Shang, J., et al.: A review of ant colony optimization based methods for detecting epistatic interactions. IEEE Access 7, 13497–13509 (2019). https://doi.org/10.1109/ACCESS.2019.2894676
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997). https://doi.org/10.1109/4235.585892
Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1
Jian, R., Chen, Y., Chen, T.: Multi-parameters unified-optimization for millimeter wave microstrip antenna based on ICACO. IEEE Access 7, 53012–53017 (2019). https://doi.org/10.1109/ACCESS.2019.2912461
Wang, X., Gu, H., Liu, Y., Zhang, H.: A two-stage RPSO-ACS based protocol: a new method for sensor network clustering and routing in mobile computing. IEEE Access 7, 113141–113150 (2019). https://doi.org/10.1109/ACCESS.2019.2933150
Zhang, H., Wang, X., Memarmoshrefi, P., Hogrefe, D.: A survey of ant colony optimization based routing protocols for mobile ad hoc networks. IEEE Access 5, 24139–24161 (2017). https://doi.org/10.1109/ACCESS.2017.2762472
Wang, H., Wang, Z.A., Yu, L., Wang, X., Liu, C.: Ant colony optimization with improved potential field heuristic for robot path planning. In: 2018 37th Chinese Control Conference (CCC), 25–27 July 2018, pp. 5317–5321 (2018). https://doi.org/10.23919/chicc.2018.8483844
Huang, Y., Gu, Y., Zheng, Z.: Research on the path planning of hair-insertion robot arm based on ant colony optimization. In: 2018 37th Chinese Control Conference (CCC), 25–27 July 2018, pp. 5191–5195. (2018) https://doi.org/10.23919/chicc.2018.8483149
Singh, R., Prasad, L.B.: Optimal trajectory tracking of robotic manipulator using ant colony optimization. In: 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2–4 Nov 2018, pp. 1–6 (2018). https://doi.org/10.1109/upcon.2018.8597087
Zhu, W., Hou, P., Chang, L., Xu, X.: Disjunctive belief rule base optimization by ant colony optimization for railway transportation safety assessment. In: 2019 Chinese Control and Decision Conference (CCDC), 3–5 June 2019, pp. 6120–6124 (2019). https://doi.org/10.1109/ccdc.2019.8833179
Eaton, J., Yang, S., Gongora, M.: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling. IEEE Trans. Intell. Transp. Syst. 18(11), 2980–2992 (2017). https://doi.org/10.1109/TITS.2017.2665042
Mavrovouniotis, M., Yang, S., Van, M., Li, C., Polycarpou, M.: Ant colony optimization algorithms for dynamic optimization: a case study of the dynamic travelling salesperson problem [research frontier]. IEEE Comput. Intell. Mag. 15(1), 52–63 (2020). https://doi.org/10.1109/MCI.2019.2954644
Ratanavilisagul, C.: Modified ant colony optimization with pheromone mutation for travelling salesman problem. In: 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 27–30 June 2017, pp. 411–414 (2017). https://doi.org/10.1109/ecticon.2017.8096261
Mavrovouniotis, M., Müller, F.M., Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017). https://doi.org/10.1109/TCYB.2016.2556742
Contreras, R., Pinninghoff, M.A., Ortega, J.: Using ant colony optimization for edge detection in gray scale images. In: Natural and Artificial Models in Computation and Biology, pp. 323–331. Springer, Berlin (2013)
Kaur, S., Kaur, P.: An Edge detection technique with image segmentation using ant colony optimization: a review. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 19–19 Nov 2016, pp. 1–5 (2016). https://doi.org/10.1109/get.2016.7916741
Metawa, U.J.N., Shankar, K., Lakshmanaprabu, S.K.: Financial crisis prediction model using ant colony optimization. Int. J. Inf. Manag. 50, 538–556 (2020). https://doi.org/10.1016/j.ijinfomgt.2018.12.001
Marinakis, Y., Marinaki, M., Doumpos, M., Zopounidis, C.: Ant colony and particle swarm optimization for financial classification problems. Expert Syst. Appl. 36(7), 10604–10611 (2009). https://doi.org/10.1016/j.eswa.2009.02.055
Kleinkauf, R., Mann, M., Backofen, R.: antaRNA: ant colony-based RNA sequence design. Bioinformatics 31(19), 3114–3121 (2015). https://doi.org/10.1093/bioinformatics/btv319
Do Duc, D., Dinh, H.Q., Dang, T.H., Laukens, K., Hoang, X.H.: AcoSeeD: an ant colony optimization for finding optimal spaced seeds in biological sequence search. In: Swarm Intelligence, pp. 204–211. Springer, Berlin
Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-TR06, Technical Report, Erciyes University (2005)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x
Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009). https://doi.org/10.1016/j.amc.2009.03.090
Gao, Y.: An improved hybrid group intelligent algorithm based on artificial bee colony and particle swarm optimization. In: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 10–11 Aug 2018, pp. 160–163 (2018). https://doi.org/10.1109/icvris.2018.00046
Wang, B., Wang, L.: A novel artificial bee colony algorithm for numerical function optimization. In: 2012 Fourth International Conference on Computational and Information Sciences, 17–19 Aug 2012, pp. 172–175 (2012). https://doi.org/10.1109/iccis.2012.32
Chengli, F., Qiang, F., Guangzheng, L., Qinghua, X.: Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism. J. Syst. Eng. Electron. 29(2), 405–414 (2018). https://doi.org/10.21629/JSEE.2018.02.20
Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012). https://doi.org/10.1016/j.ins.2010.07.015
Gao, W.-F., Liu, S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012). https://doi.org/10.1016/j.cor.2011.06.007
Wang, L., Zhang, X., Zhang, X.: Antenna array design by artificial bee colony algorithm with similarity induced search method. IEEE Trans. Magn. 55(6), 1–4 (2019). https://doi.org/10.1109/TMAG.2019.2896921
Liang, H., Jiang, H.: The modified artificial bee colony-based SLM scheme for PAPR reduction in OFDM systems: In: 2019 International Conference on Artificial Intelligence in Information And Communication (ICAIIC), 11–13 Feb 2019, pp. 504–508 (2019). https://doi.org/10.1109/icaiic.2019.8669020
Salman, A., Qureshi, I.M., Saleem, S., Saeed, S.: Optimization of resource allocation for heterogeneous services in OFDM based cognitive radio networks using artificial bee colony. In: 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), 28–29 Aug 2019, vol. 4, pp. 1–5 (2019). https://doi.org/10.1109/raee.2019.8886951
Rekaby, A., Youssif, A.A., Eldin, A.S.: Introducing adaptive artificial bee colony algorithm and using it in solving traveling salesman problem. In: 2013 Science and Information Conference, 7–9 Oct 2013, pp. 502–506 (2013)
Wang, Y.: Improving artificial bee colony and particle swarm optimization to solve TSP problem. In: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 10–11 Aug 2018, pp. 179–182 (2018). https://doi.org/10.1109/icvris.2018.00051
Kumar, D., Mishra, A., Chatterjee, K.: Power and frequency control of a wind energy power system using artificial bee colony algorithm. In: 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 23–24 March 2017, pp. 561–565 (2017). https://doi.org/10.1109/iconstem.2017.8261385
Çinar, M., Kaygusuz, A.: Optimum fuel cost in load flow analysis of smart grid by using artificial bee colony algorithm. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 21–22 Sept 2019, pp. 1–5. https://doi.org/10.1109/IDAP.2019.8875893 (2019)
Salehahmadi, Z., Manafi, A.: How can bee colony algorithm serve medicine? World J. Plast. Surg. 3(2), 87–92 (2014)
Gopika, G.S., Shanthini, J., Karthik, S.: Hybrid approach for the brain tumors detection & segmentation using artificial bee colony optimization with FCM. In: 2018 International Conference on Soft-computing and Network Security (ICSNS), 14–16 Feb 2018, pp. 1–5 (2018). https://doi.org/10.1109/icsns.2018.8573648
Keerthika, T.: A Hybrid Fish—Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier (2019)
Farooq, M.U., Salman, Q., Arshad, M., Khan, I., Akhtar, R., Kim, S.: An artificial bee colony algorithm based on a multi-objective framework for supplier integration. Appl. Sci. 9, 588 (2019). https://doi.org/10.3390/app9030588
Xiaoyi, D.: An efficient hybrid artificial bee colony algorithm for customer segmentation in mobile E-commerce. J. Electron. Commer. Organ. (JECO) 11(2), 53–63 (2013). https://doi.org/10.4018/jeco.2013040105
Cuevas, E., Sención-Echauri, F., Zaldivar, D., Pérez, M.: Image segmentation using artificial bee colony optimization. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization: From Classical to Modern Approach, pp. 965–990. Springer, Berlin (2013)
Yimit, A., Hagihara, Y., Miyoshi, T., Hagihara, Y.: Automatic image enhancement by artificial bee colony algorithm. In: 2012 International Conference on Graphic and Image Processing. SPIE (2013)
Yang, X., Suash, D.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 9–11 Dec 2009, pp. 210–214 (2009). https://doi.org/10.1109/nabic.2009.5393690
Yang, X.-S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013). https://doi.org/10.1016/j.cor.2011.09.026
Mareli, M., Twala, B.: An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inf. 14(2), 107–115 (2018). https://doi.org/10.1016/j.aci.2017.09.001
Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solitons Fractals 44(9), 710–718 (2011). https://doi.org/10.1016/j.chaos.2011.06.004
Layeb, A., Boussalia, S.R.: A novel quantum inspired cuckoo search algorithm for bin packing problem. Int. J. Inf. Technol. Comput. Sci. 4, 58–67 (2012). https://doi.org/10.5815/ijitcs.2012.05.08
Han, W., Lu, X.S., Zhou, M., Shen, X., Wang, J., Xu, J.: An evaluation and optimization methodology for efficient power plant programs. IEEE Trans. Syst. Man Cybern. Syst. 50(2), 707–716 (2020). https://doi.org/10.1109/TSMC.2017.2714198
Nugraha, D.A., Lian, K.L., Suwarno, : A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system. Can. J. Electr. Comput. Eng. 42(3), 173–182 (2019). https://doi.org/10.1109/cjece.2019.2914723
Gupta, G.P.: Improved cuckoo search-based clustering protocol for wireless sensor networks. Procedia Comput. Sci. 125, 234–240 (2018). https://doi.org/10.1016/j.procs.2017.12.032
Goyal, S., Patterh, M.S.: Wireless sensor network localization based on cuckoo search algorithm. Wireless Pers. Commun. 79(1), 223–234 (2014). https://doi.org/10.1007/s11277-014-1850-8
Mohanty, P., Parhi, D.: Optimal path planning for a mobile robot using cuckoo search algorithm. J. Exp. Theor. Artif. Intell. 28, 1–18 (2014). https://doi.org/10.1080/0952813x.2014.971442
Laha, S.: A quantum-inspired cuckoo search algorithm for the travelling salesman problem. In: 2015 International Conference on Computing, Communication and Security (ICCCS), 4–5 Dec 2015, pp. 1–6 (2015). https://doi.org/10.1109/cccs.2015.7374201
Jebril, N.A., Abu Al-Haija, Q.: Cuckoo optimization algorithm (COA) for image processing. In: Hemanth, J., Balas, V.E. (eds.) Nature Inspired Optimization Techniques for Image Processing Applications, pp. 189–213. Springer, Cham (2019)
Ashour, A.S., Samanta, S., Dey, N., Kausar, N., Abdessalemkaraa, W.B., Hassanien, A.E.: Computed tomography image enhancement using cuckoo search: a log transform based approach. J. Signal Inf. Process. 06(03), 14 (2015). https://doi.org/10.4236/jsip.2015.63023
Issa, H.H., Ahmed, S.M.E.: FPGA implementation of floating point based cuckoo search algorithm. IEEE Access 7, 134434–134447 (2019). https://doi.org/10.1109/ACCESS.2019.2942205
Krishnanand, K.N., Ghose, D.: Glowworm swarm optimisation: a new method for optimising multi-modal functions. Int. J. Comput. Intell. Stud. 1(1), 93–119 (2009). https://doi.org/10.1504/ijcistudies.2009.025340
Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3(2), 87–124 (2009). https://doi.org/10.1007/s11721-008-0021-5
Wu, B., Qian, C., Ni, W., Fan, S.: The improvement of glowworm swarm optimization for continuous optimization problems. Expert Syst. Appl. 39(7), 6335–6342 (2012). https://doi.org/10.1016/j.eswa.2011.12.017
Ludwig, S.A.: Improved glowworm swarm optimization algorithm applied to multi-level thresholding. In: 2016 IEEE Congress on Evolutionary Computation (CEC), 24–29 July 2016, pp. 1533–1540 (2016). https://doi.org/10.1109/cec.2016.7743971
Qiong, P., Liao, Y., Hao, P., He, X., Hui, C.: A self-adaptive step glowworm swarm optimization approach. Int. J. Comput. Intell. Appl. 18(01), 1950004 (2019). https://doi.org/10.1142/s1469026819500044
Zheng, X., Gui, Z., Wang, Y.: Support vector machine model based on glowworm swarm optimization in application of vibrant fault diagnosis for hydro-turbine generating unit. In: 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), 3–5 Oct 2017, pp. 238–141 (2017). https://doi.org/10.1109/itoec.2017.8122427
Senthilnath, J., Omkar, S.N., Mani, V., Tejovanth, N., Diwakar, P.G., et al.: Multi-spectral satellite image classification using glowworm swarm optimization. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, 24–29 July 2011, pp. 47–50 (2011). https://doi.org/10.1109/igarss.2011.6048894
Zhou, Y.-Q., Ouyang, Z., Liu, J., Sang, G.: A novel K-means image clustering algorithm based on glowworm swarm optimization. Electr. Rev. 88, 266–270 (2012)
Zeng, T., Hua, Y., Zhao, X., Liu, T.: Research on glowworm swarm optimization localization algorithm based on wireless sensor network. In: 2016 IEEE international frequency control symposium (IFCS), 9–12 May 2016, pp. 1–5 (2016). https://doi.org/10.1109/fcs.2016.7546730
Jiang, H., Tang, X.: Polarimetric MIMO radar target detection based on glowworm swarm optimization algorithm. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4–9 May 2014, pp. 805–809 (2014). https://doi.org/10.1109/icassp.2014.6853708
Zhang, Y., Ma, X., Miao, Y.: Localization of multiple odor sources using modified glowworm swarm optimization with collective robots. In: Proceedings of the 30th Chinese Control Conference, 22–24 July 2011, pp. 1899–1904 (2011)
Krishnanand, K.N., Ghose, D.: A glowworm swarm optimization based multi-robot system for signal source localization. In: Liu, D., Wang, L., Tan, K.C. (eds.) Design and Control of Intelligent Robotic Systems, pp. 49–68. Springer, Berlin (2009)
Quang, N.N., Sanseverino, E.R., Silvestre, M.L.D., Madonia, A., Li, C., Guerrero, J.M.: Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids. In: 2014 AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 18–19 Sept 2014, pp. 1–6 (2014). https://doi.org/10.1109/aeit.2014.7002028
Surender Reddy, S., Srinivasa Rathnam, C.: Optimal power flow using glowworm swarm optimization. Int. J. Electr. Power Energy Syst. 80, 128–139 (2016). https://doi.org/10.1016/j.ijepes.2016.01.036
Wang, X., Yang, K., Zhou, X.: Two-stage glowworm swarm optimisation for economical operation of hydropower station. IET Renew. Power Gener. 12(9), 992–1003 (2018). https://doi.org/10.1049/iet-rpg.2017.0466
Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), 16–19 July 2000, vol. 1, pp. 84–88 (2000). https://doi.org/10.1109/cec.2000.870279
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), 4–9 May 1998, pp. 69–73 (1998). https://doi.org/10.1109/icec.1998.699146
Sedarous, S., El-Gokhy, S.M., Sallam, E.: Multi-swarm multi-objective optimization based on a hybrid strategy. Alex. Eng. J. 57(3), 1619–1629 (2018). https://doi.org/10.1016/j.aej.2017.06.017
Lizzi, L., Viani, F., Azaro, R., Massa, A.: Optimization of a spline-shaped UWB antenna by PSO. IEEE Antennas Wirel. Propag. Lett. 6, 182–185 (2007). https://doi.org/10.1109/LAWP.2007.894157
Li, Y., Shao, W., You, L., Wang, B.: An improved PSO algorithm and its application to UWB antenna design. IEEE Antennas Wirel. Propag. Lett. 12, 1236–1239 (2013). https://doi.org/10.1109/LAWP.2013.2283375
Wang, Z., Zhang, T., Kong, L., Cui, G.: Prediction-based PSO algorithm for MIMO radar antenna deployment in dynamic environment. J. Eng. 2019(20), 6646–6650 (2019). https://doi.org/10.1049/joe.2019.0188
Masehian, E., Sedighizadeh, D.: An improved particle swarm optimization method for motion planning of multiple robots. In: Martinoli, A, et al. (eds.) Distributed Autonomous Robotic Systems: The 10th International Symposium, pp. 175–188. Springer, Berlin (2013)
Aziz, N.A.A., Ibrahim, Z.: Asynchronous particle swarm optimization for swarm robotics. Procedia Eng. 41, 951–957 (2012). https://doi.org/10.1016/j.proeng.2012.07.268
Ayari, A., Bouamama, S.: A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization. Robotics Biomim 4(1), 8 (2017). https://doi.org/10.1186/s40638-017-0062-6
Venkatalakshmi, K., Shalinie, S.M.: A customized particle swarm optimization algorithm for image enhancement. In: 2010 international conference on communication control and computing technologies, 7–9 Oct 2010, pp. 603–607 (2010). https://doi.org/10.1109/icccct.2010.5670768
Farshi, T.R., Drake, J.H., Özcan, E.: A multimodal particle swarm optimization-based approach for image segmentation. Expert Syst. Appl. 149, 113233 (2020). https://doi.org/10.1016/j.eswa.2020.113233
Mohsen, F., Hadhoud, M.M., Amin, K.: A new image segmentation method based on particle swarm optimization. Int. Arab Jo. Inf. Technol. 9, 487–493 (2012)
Esmin, A., Lambert-Torres, G.: Application of particle swarm optimization to optimal power system. Int. J. Innov. Comput. Inf. Control 8, 1705–1716 (2013)
Das, T.K., Venayagamoorthy, G.K.: Optimal design of power system stabilizers using a small population based PSO. In: 2006 IEEE Power Engineering Society General Meeting, 18–22 June 2006, p. 7 (2006). https://doi.org/10.1109/pes.2006.1709322
Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). https://doi.org/10.1109/59.898095
Pandey, P., Soni, S.: Enhance clustering approach using PSO-A* for E-commerce. Int. J. Comput. Appl. 182, 57–60 (2019). https://doi.org/10.5120/ijca2019918405
Yang, W., Xie, Q., Li, M.: Inventory control method of reverse logistics for shipping electronic commerce based on improved multi-objective particle swarm optimization algorithm. J. Coastal Res. 83, 786–790 (2018). https://doi.org/10.2112/si83-128.1
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)
Wang, Y., et al.: A novel bat algorithm with multiple strategies coupling for numerical optimization. Mathematics 7(2), 135 (2019)
Swayamsiddha, S., Prateek, S.S., Singh, S.Parija, Pratihar, D.K.: Reporting cell planning-based cellular mobility management using a binary artificial bat algorithm. Heliyon 5(3), e01276 (2019). https://doi.org/10.1016/j.heliyon.2019.e01276
Ng, C.K., Wu, C.H., Ip, W.H., Yung, K.L.: A smart bat algorithm for wireless sensor network deployment in 3-D environment. IEEE Commun. Lett. 22(10), 2120–2123 (2018). https://doi.org/10.1109/LCOMM.2018.2861766
Adarsh, B.R., Raghunathan, T., Jayabarathi, T., Yang, X.-S.: Economic dispatch using chaotic bat algorithm. Energy 96, 666–675 (2016). https://doi.org/10.1016/j.energy.2015.12.096
Biswal, S., Barisal, A.K., Behera, A., Prakash, T.: Optimal power dispatch using BAT algorithm. In: 2013 International Conference on Energy Efficient Technologies for Sustainability, 10–12 April 2013, pp. 1018–1023 (2013). https://doi.org/10.1109/iceets.2013.6533526
Rahmani, M., Ghanbari, A., Ettefagh, M.M.: Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst. Appl. 56, 164–176 (2016). https://doi.org/10.1016/j.eswa.2016.03.006
Rahmani, M., Ghanbari, A., Ettefagh, M.M.: A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J. Vib. Control 24(10), 2045–2060 (2018). https://doi.org/10.1177/1077546316676734
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406
Abbass, H.A.: MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 27–30 May 2001, vol. 1, pp. 207–214 (2001). https://doi.org/10.1109/cec.2001.934391
Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002). https://doi.org/10.1109/MCS.2002.1004010
Muller, S.D., Marchetto, J., Airaghi, S., Kournoutsakos, P.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6(1), 16–29 (2002). https://doi.org/10.1109/4235.985689
Li, X., Shao, Z., Qian, J.I.: An optimizing method based on autonomous animate: fish swarm algorithm. Syst. Eng. Theory Practice 22, 32–38 (2002)
Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resourc. Plan. Manag. 129(3), 210–225 (2003). https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Ant Colony Optimization and Swarm Intelligence. Springer, Berlin, pp. 83–94
Yang, X.-S.: Engineering optimizations via nature-inspired virtual bee algorithms. In: Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. Springer, Berlin, pp. 317–323 (2005)
Teodorović, D., Dell’Orco, M.: Bee colony optimization—A cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation, pp. 51–60 (2005)
Li, W.H., et al.: Function optimization method based on bacterial colony chemotaxis. J. Circuits Syst. 10(01), 58–63 (2005)
Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Computational Intelligence and Bioinspired Systems. Springer, Berlin, pp. 318–325 (2005)
Haddad, O.B., Afshar, A., Mariño, M.A.: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20(5), 661–680 (2006). https://doi.org/10.1007/s11269-005-9001-3
Chu, S.-C., Tsai, P.-W., Pan, J.-S.: Cat swarm optimization. In: PRICAI 2006: Trends in Artificial Intelligence. Springer, Berlin, pp. 854–858 (2006)
Bastos-Filho, C., Lima Neto, F., Lins, A., Nascimento, A., Lima, M.: A novel search algorithm based on fish school behavior, pp. 2646–2651 (2008)
Havens, T.C., Spain, C.J., Salmon, N.G., Keller, J.M.: Roach Infestation Optimization. In: 2008 IEEE Swarm Intelligence Symposium, 21–23 Sept 2008, pp 1–7 (2008). https://doi.org/10.1109/sis.2008.4668317
Ying, C., Hua, M., Huilian, L., Zhen, J., Wu, Q.H.: A fast bacterial swarming algorithm for high-dimensional function optimization. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1–6 June 2008, pp. 3135–3140 (2008). https://doi.org/10.1109/cec.2008.4631222
Padró, F., Navarro, J.: Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour (2009). https://doi.org/10.1145/1543834.1543949
He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 13(5), 973–990 (2009). https://doi.org/10.1109/TEVC.2009.2011992
Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications. Springer, Berlin, pp. 169–178 (2009)
Marinakis, Y., Marinaki, M., Matsatsinis, N.: A bumble bees mating optimization algorithm for global unconstrained optimization problems. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 305–318. Springer, Berlin (2010)
Zhao Hui, C., Hai Yan, T.: Cockroach swarm optimization. In: Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET’10), vol. 6 (2010). https://doi.org/10.1109/iccet.2010.5485993
Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math Appl. 60(7), 2087–2098 (2010). https://doi.org/10.1016/j.camwa.2010.07.049
Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012). https://doi.org/10.1016/j.cnsns.2012.05.010
Tang, R., Fong, S., Yang, X., Deb, S.: Wolf search algorithm with ephemeral memory. In: Seventh International Conference on Digital Information Management (ICDIM 2012), 22–24 Aug 2012, pp. 165–172 (2012). https://doi.org/10.1109/icdim.2012.6360147
Niu, B., Wang, H.: Bacterial colony optimization. Discrete Dyn. Nat. Soc. 2012, 1–29 (2012)
B. R. Rajakumar, “The Lion’s Algorithm: A New Nature-Inspired Search Algorithm,” Procedia Technology, vol. 6, pp. 126-135, 2012/01/01/2012, doi: https://doi.org/10.1016/j.protcy.2012.10.016
Taherdangkoo, M.: A novel meta-heuristic algorithm for numerical function optimization: blind, naked mole-rats (BNMR) algorithm. Sci. Res. Essays 7(41), 3566–3583 (2012)
Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012). https://doi.org/10.1016/j.knosys.2011.07.001
Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013). https://doi.org/10.1016/j.eswa.2013.05.041
Eesa, A., Mohsin Abdulazeez, A., Orman, Z.: A New Tool for Global Optimization Problems-Cuttlefish Algorithm (2014)
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46-61, 2014/03/01/2014, doi: https://doi.org/10.1016/j.advengsoft.2013.12.007
Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 6(1), 31–47 (2014). https://doi.org/10.1007/s12293-013-0128-0
Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24(7), 1867–1877 (2014). https://doi.org/10.1007/s00521-013-1433-8
Wang, G.-G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006
Wang, G.-G., Deb, S., Coelho, L.: Elephant Herding Optimization (2015)
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001
Wu, T.-Q., Yao, M., Yang, J.-H.: Dolphin swarm algorithm. Front. Inf. Technol. Electron. Eng. 17(8), 717–729 (2016). https://doi.org/10.1631/fitee.1500287
Topal, A.O., Altun, O.: A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf. Sci. 354, 222–235 (2016). https://doi.org/10.1016/j.ins.2016.03.025
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1
Chen, Y., Peng, B.: Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework. Appl. Soft Comput. 43, 357–371 (2016). https://doi.org/10.1016/j.asoc.2016.02.045
Chen, Y., Wang, Z., Yang, E., Li, Y.: Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), 15–17 Dec 2016, pp. 116–121. (2016). https://doi.org/10.1109/skima.2016.7916207
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008
Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014
Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002
Shamsaldin, A.S., Rashid, T.A., Al-Rashid Agha, R.A., Al-Salihi, N.K., Mohammadi, M.: Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. J. Comput. Des. Eng. 6(4), 562–583 (2019). https://doi.org/10.1016/j.jcde.2019.04.004
Abdullah, J.M., Ahmed, T.: Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7, 43473–43486 (2019). https://doi.org/10.1109/ACCESS.2019.2907012
Khan, T.A., Ling, S.H., Mohan, A.S.: Advanced particle swarm optimization algorithm with improved velocity update strategy. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 7–10 Oct 2018, pp. 3944–3949 (2018). https://doi.org/10.1109/smc.2018.00669
Coco, S., Laudani, A., Riganti Fulginei, F., Salvini, A.: TEAM problem 22 approached by a hybrid artificial life method. COMPEL Int. J. Comput. Mat. Electr. Electr. Eng. 31(3), 816–826 (2012). https://doi.org/10.1108/03321641211209726
Rehman, O.U., Rehman, S.U., Tu, S., Khan, S., Waqas, M., Yang, S.: A quantum particle swarm optimization method with fitness selection methodology for electromagnetic inverse problems. IEEE Access 6, 63155–63163 (2018). https://doi.org/10.1109/ACCESS.2018.2873670
Guimaraes, F.G., Campelo, F., Saldanha, R.R., Igarashi, H., Takahashi, R.H.C., Ramirez, J.A.: A multiobjective proposal for the TEAM benchmark problem 22. IEEE Trans. Magn. 42(4), 1471–1474 (2006). https://doi.org/10.1109/TMAG.2006.871570
Khan, S.U., Yang, S., Wang, L., Liu, L.: A modified particle swarm optimization algorithm for global optimizations of inverse problems. IEEE Trans. Magn. 52(3), 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2487678
Alotto, P., et al.: SMES optimization benchmark extended: introducing Pareto optimal solutions into TEAM22. IEEE Trans. Magn. 44(6), 1066–1069 (2008). https://doi.org/10.1109/TMAG.2007.916091
Karban, P., Kropík, P., Kotlan, V., Doležel, I.: Bayes approach to solving T.E.A.M. benchmark problems 22 and 25 and its comparison with other optimization techniques. Appl. Math. Comput. 319, 681–692 (2018). https://doi.org/10.1016/j.amc.2017.07.043
Coelho, L., Alotto, P.: Global optimization of electromagnetic devices using an exponential quantum-behaved particle swarm optimizer. IEEE Trans. Magn. 44, 1074–1077 (2008). https://doi.org/10.1109/tmag.2007.916032
Alotto, U.B.P.G., Freschi, F., Jaindl, M., et al.: Repetto: TEAM Workshop Problem 22: SMES Optimization Benchmark
Duan, Q., Shao, C., Li, X., Shi, Y.: Visualizing the Search Dynamics in a High-Dimensional Space for a Particle Swarm Optimizer, pp. 994–1002 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khan, T.A., Ling, S.H. A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem. J Comput Electron 19, 1606–1628 (2020). https://doi.org/10.1007/s10825-020-01567-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-020-01567-6