[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper encompasses a detailed review of state-of-the-art swarm-based algorithms, with a focus on their applications along with a discussion on the merits and limitations of each algorithm. Further, a recently developed advanced particle swarm optimization (APSO) algorithm is compared with the different state-of-the-art algorithms through solving an electromagnetic inverse problem. Results show that the APSO algorithm outperforms the other algorithms. This research provides a scientific guideline for the comparison of different swarm-based algorithms and their utilization regarding specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: From Natural to Artificial Swarm Intelligence. Oxford University Press Inc, Oxford (1999)

    MATH  Google Scholar 

  2. Chakraborty, A., Kar, A.K.: Swarm Intelligence: A Review of Algorithms. In: Patnaik, S., Yang, X.-S., Nakamatsu, K. (eds.) Nature-Inspired Computing and Optimization: Theory and Applications, pp. 475–494. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  3. Li, X., Clerc, M.: Swarm Intelligence. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 353–384. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  4. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, New York City (2010)

    Google Scholar 

  5. Mitchell, M., Taylor, C.E.: Evolutionary computation: an overview. Annu. Rev. Ecol. Syst. 30(1), 593–616 (1999). https://doi.org/10.1146/annurev.ecolsys.30.1.593

    Article  Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  7. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 127–164. Springer, Boston (2005)

    Chapter  Google Scholar 

  8. Bäck, T., Hoffmeister, F.: Basic aspects of evolution strategies. Stat. Comput. 4(2), 51–63 (1994). https://doi.org/10.1007/bf00175353

    Article  Google Scholar 

  9. Fogel, D.B.: An overview of evolutionary programming. In: Davis, L.D., De Jong, K., Vose, M.D., Whitley, L.D. (eds.) Evolutionary Algorithms, pp. 89–109. Springer, New York (1999)

    Chapter  Google Scholar 

  10. Eiben, A.E., Smith, J.E.: Evolutionary programming. In: Introduction to Evolutionary Computing, pp. 89–99. Springer, Berlin (2003)

  11. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy. https://ci.nii.ac.jp/naid/10016599043/en/ (1992)

  12. Fan, Y., Wang, G., Lu, X., Wang, G.: Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands. PLoS ONE 14(12), e0226204 (2020). https://doi.org/10.1371/journal.pone.0226204

    Article  Google Scholar 

  13. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 227–263. Springer, Boston (2010)

    Chapter  Google Scholar 

  14. Hansford, D.: Mob Mentality. No. 123

  15. Yang, Q., et al.: Adaptive multimodal continuous ant colony optimization. IEEE Trans. Evol. Comput. 21(2), 191–205 (2017). https://doi.org/10.1109/TEVC.2016.2591064

    Article  Google Scholar 

  16. Zhang, D., You, X., Liu, S., Yang, K.: Multi-colony ant colony optimization based on generalized Jaccard similarity recommendation strategy. IEEE Access 7, 157303–157317 (2019). https://doi.org/10.1109/ACCESS.2019.2949860

    Article  Google Scholar 

  17. Shang, J., et al.: A review of ant colony optimization based methods for detecting epistatic interactions. IEEE Access 7, 13497–13509 (2019). https://doi.org/10.1109/ACCESS.2019.2894676

    Article  Google Scholar 

  18. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997). https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  19. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

    Article  MATH  Google Scholar 

  20. Jian, R., Chen, Y., Chen, T.: Multi-parameters unified-optimization for millimeter wave microstrip antenna based on ICACO. IEEE Access 7, 53012–53017 (2019). https://doi.org/10.1109/ACCESS.2019.2912461

    Article  Google Scholar 

  21. Wang, X., Gu, H., Liu, Y., Zhang, H.: A two-stage RPSO-ACS based protocol: a new method for sensor network clustering and routing in mobile computing. IEEE Access 7, 113141–113150 (2019). https://doi.org/10.1109/ACCESS.2019.2933150

    Article  Google Scholar 

  22. Zhang, H., Wang, X., Memarmoshrefi, P., Hogrefe, D.: A survey of ant colony optimization based routing protocols for mobile ad hoc networks. IEEE Access 5, 24139–24161 (2017). https://doi.org/10.1109/ACCESS.2017.2762472

    Article  Google Scholar 

  23. Wang, H., Wang, Z.A., Yu, L., Wang, X., Liu, C.: Ant colony optimization with improved potential field heuristic for robot path planning. In: 2018 37th Chinese Control Conference (CCC), 25–27 July 2018, pp. 5317–5321 (2018). https://doi.org/10.23919/chicc.2018.8483844

  24. Huang, Y., Gu, Y., Zheng, Z.: Research on the path planning of hair-insertion robot arm based on ant colony optimization. In: 2018 37th Chinese Control Conference (CCC), 25–27 July 2018, pp. 5191–5195. (2018) https://doi.org/10.23919/chicc.2018.8483149

  25. Singh, R., Prasad, L.B.: Optimal trajectory tracking of robotic manipulator using ant colony optimization. In: 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2–4 Nov 2018, pp. 1–6 (2018). https://doi.org/10.1109/upcon.2018.8597087

  26. Zhu, W., Hou, P., Chang, L., Xu, X.: Disjunctive belief rule base optimization by ant colony optimization for railway transportation safety assessment. In: 2019 Chinese Control and Decision Conference (CCDC), 3–5 June 2019, pp. 6120–6124 (2019). https://doi.org/10.1109/ccdc.2019.8833179

  27. Eaton, J., Yang, S., Gongora, M.: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling. IEEE Trans. Intell. Transp. Syst. 18(11), 2980–2992 (2017). https://doi.org/10.1109/TITS.2017.2665042

    Article  Google Scholar 

  28. Mavrovouniotis, M., Yang, S., Van, M., Li, C., Polycarpou, M.: Ant colony optimization algorithms for dynamic optimization: a case study of the dynamic travelling salesperson problem [research frontier]. IEEE Comput. Intell. Mag. 15(1), 52–63 (2020). https://doi.org/10.1109/MCI.2019.2954644

    Article  Google Scholar 

  29. Ratanavilisagul, C.: Modified ant colony optimization with pheromone mutation for travelling salesman problem. In: 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 27–30 June 2017, pp. 411–414 (2017). https://doi.org/10.1109/ecticon.2017.8096261

  30. Mavrovouniotis, M., Müller, F.M., Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017). https://doi.org/10.1109/TCYB.2016.2556742

    Article  Google Scholar 

  31. Contreras, R., Pinninghoff, M.A., Ortega, J.: Using ant colony optimization for edge detection in gray scale images. In: Natural and Artificial Models in Computation and Biology, pp. 323–331. Springer, Berlin (2013)

  32. Kaur, S., Kaur, P.: An Edge detection technique with image segmentation using ant colony optimization: a review. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 19–19 Nov 2016, pp. 1–5 (2016). https://doi.org/10.1109/get.2016.7916741

  33. Metawa, U.J.N., Shankar, K., Lakshmanaprabu, S.K.: Financial crisis prediction model using ant colony optimization. Int. J. Inf. Manag. 50, 538–556 (2020). https://doi.org/10.1016/j.ijinfomgt.2018.12.001

    Article  Google Scholar 

  34. Marinakis, Y., Marinaki, M., Doumpos, M., Zopounidis, C.: Ant colony and particle swarm optimization for financial classification problems. Expert Syst. Appl. 36(7), 10604–10611 (2009). https://doi.org/10.1016/j.eswa.2009.02.055

    Article  Google Scholar 

  35. Kleinkauf, R., Mann, M., Backofen, R.: antaRNA: ant colony-based RNA sequence design. Bioinformatics 31(19), 3114–3121 (2015). https://doi.org/10.1093/bioinformatics/btv319

    Article  Google Scholar 

  36. Do Duc, D., Dinh, H.Q., Dang, T.H., Laukens, K., Hoang, X.H.: AcoSeeD: an ant colony optimization for finding optimal spaced seeds in biological sequence search. In: Swarm Intelligence, pp. 204–211. Springer, Berlin

  37. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-TR06, Technical Report, Erciyes University (2005)

  38. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  39. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009). https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao, Y.: An improved hybrid group intelligent algorithm based on artificial bee colony and particle swarm optimization. In: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 10–11 Aug 2018, pp. 160–163 (2018). https://doi.org/10.1109/icvris.2018.00046

  41. Wang, B., Wang, L.: A novel artificial bee colony algorithm for numerical function optimization. In: 2012 Fourth International Conference on Computational and Information Sciences, 17–19 Aug 2012, pp. 172–175 (2012). https://doi.org/10.1109/iccis.2012.32

  42. Chengli, F., Qiang, F., Guangzheng, L., Qinghua, X.: Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism. J. Syst. Eng. Electron. 29(2), 405–414 (2018). https://doi.org/10.21629/JSEE.2018.02.20

    Article  Google Scholar 

  43. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012). https://doi.org/10.1016/j.ins.2010.07.015

    Article  Google Scholar 

  44. Gao, W.-F., Liu, S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012). https://doi.org/10.1016/j.cor.2011.06.007

    Article  MATH  Google Scholar 

  45. Wang, L., Zhang, X., Zhang, X.: Antenna array design by artificial bee colony algorithm with similarity induced search method. IEEE Trans. Magn. 55(6), 1–4 (2019). https://doi.org/10.1109/TMAG.2019.2896921

    Article  Google Scholar 

  46. Liang, H., Jiang, H.: The modified artificial bee colony-based SLM scheme for PAPR reduction in OFDM systems: In: 2019 International Conference on Artificial Intelligence in Information And Communication (ICAIIC), 11–13 Feb 2019, pp. 504–508 (2019). https://doi.org/10.1109/icaiic.2019.8669020

  47. Salman, A., Qureshi, I.M., Saleem, S., Saeed, S.: Optimization of resource allocation for heterogeneous services in OFDM based cognitive radio networks using artificial bee colony. In: 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), 28–29 Aug 2019, vol. 4, pp. 1–5 (2019). https://doi.org/10.1109/raee.2019.8886951

  48. Rekaby, A., Youssif, A.A., Eldin, A.S.: Introducing adaptive artificial bee colony algorithm and using it in solving traveling salesman problem. In: 2013 Science and Information Conference, 7–9 Oct 2013, pp. 502–506 (2013)

  49. Wang, Y.: Improving artificial bee colony and particle swarm optimization to solve TSP problem. In: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 10–11 Aug 2018, pp. 179–182 (2018). https://doi.org/10.1109/icvris.2018.00051

  50. Kumar, D., Mishra, A., Chatterjee, K.: Power and frequency control of a wind energy power system using artificial bee colony algorithm. In: 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 23–24 March 2017, pp. 561–565 (2017). https://doi.org/10.1109/iconstem.2017.8261385

  51. Çinar, M., Kaygusuz, A.: Optimum fuel cost in load flow analysis of smart grid by using artificial bee colony algorithm. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 21–22 Sept 2019, pp. 1–5. https://doi.org/10.1109/IDAP.2019.8875893 (2019)

  52. Salehahmadi, Z., Manafi, A.: How can bee colony algorithm serve medicine? World J. Plast. Surg. 3(2), 87–92 (2014)

    Google Scholar 

  53. Gopika, G.S., Shanthini, J., Karthik, S.: Hybrid approach for the brain tumors detection & segmentation using artificial bee colony optimization with FCM. In: 2018 International Conference on Soft-computing and Network Security (ICSNS), 14–16 Feb 2018, pp. 1–5 (2018). https://doi.org/10.1109/icsns.2018.8573648

  54. Keerthika, T.: A Hybrid Fish—Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier (2019)

  55. Farooq, M.U., Salman, Q., Arshad, M., Khan, I., Akhtar, R., Kim, S.: An artificial bee colony algorithm based on a multi-objective framework for supplier integration. Appl. Sci. 9, 588 (2019). https://doi.org/10.3390/app9030588

  56. Xiaoyi, D.: An efficient hybrid artificial bee colony algorithm for customer segmentation in mobile E-commerce. J. Electron. Commer. Organ. (JECO) 11(2), 53–63 (2013). https://doi.org/10.4018/jeco.2013040105

    Article  Google Scholar 

  57. Cuevas, E., Sención-Echauri, F., Zaldivar, D., Pérez, M.: Image segmentation using artificial bee colony optimization. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization: From Classical to Modern Approach, pp. 965–990. Springer, Berlin (2013)

    Chapter  Google Scholar 

  58. Yimit, A., Hagihara, Y., Miyoshi, T., Hagihara, Y.: Automatic image enhancement by artificial bee colony algorithm. In: 2012 International Conference on Graphic and Image Processing. SPIE (2013)

  59. Yang, X., Suash, D.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 9–11 Dec 2009, pp. 210–214 (2009). https://doi.org/10.1109/nabic.2009.5393690

  60. Yang, X.-S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013). https://doi.org/10.1016/j.cor.2011.09.026

    Article  MathSciNet  MATH  Google Scholar 

  61. Mareli, M., Twala, B.: An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inf. 14(2), 107–115 (2018). https://doi.org/10.1016/j.aci.2017.09.001

    Article  Google Scholar 

  62. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solitons Fractals 44(9), 710–718 (2011). https://doi.org/10.1016/j.chaos.2011.06.004

    Article  Google Scholar 

  63. Layeb, A., Boussalia, S.R.: A novel quantum inspired cuckoo search algorithm for bin packing problem. Int. J. Inf. Technol. Comput. Sci. 4, 58–67 (2012). https://doi.org/10.5815/ijitcs.2012.05.08

    Article  Google Scholar 

  64. Han, W., Lu, X.S., Zhou, M., Shen, X., Wang, J., Xu, J.: An evaluation and optimization methodology for efficient power plant programs. IEEE Trans. Syst. Man Cybern. Syst. 50(2), 707–716 (2020). https://doi.org/10.1109/TSMC.2017.2714198

    Article  Google Scholar 

  65. Nugraha, D.A., Lian, K.L., Suwarno, : A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system. Can. J. Electr. Comput. Eng. 42(3), 173–182 (2019). https://doi.org/10.1109/cjece.2019.2914723

    Article  Google Scholar 

  66. Gupta, G.P.: Improved cuckoo search-based clustering protocol for wireless sensor networks. Procedia Comput. Sci. 125, 234–240 (2018). https://doi.org/10.1016/j.procs.2017.12.032

    Article  Google Scholar 

  67. Goyal, S., Patterh, M.S.: Wireless sensor network localization based on cuckoo search algorithm. Wireless Pers. Commun. 79(1), 223–234 (2014). https://doi.org/10.1007/s11277-014-1850-8

    Article  Google Scholar 

  68. Mohanty, P., Parhi, D.: Optimal path planning for a mobile robot using cuckoo search algorithm. J. Exp. Theor. Artif. Intell. 28, 1–18 (2014). https://doi.org/10.1080/0952813x.2014.971442

    Article  Google Scholar 

  69. Laha, S.: A quantum-inspired cuckoo search algorithm for the travelling salesman problem. In: 2015 International Conference on Computing, Communication and Security (ICCCS), 4–5 Dec 2015, pp. 1–6 (2015). https://doi.org/10.1109/cccs.2015.7374201

  70. Jebril, N.A., Abu Al-Haija, Q.: Cuckoo optimization algorithm (COA) for image processing. In: Hemanth, J., Balas, V.E. (eds.) Nature Inspired Optimization Techniques for Image Processing Applications, pp. 189–213. Springer, Cham (2019)

    Chapter  Google Scholar 

  71. Ashour, A.S., Samanta, S., Dey, N., Kausar, N., Abdessalemkaraa, W.B., Hassanien, A.E.: Computed tomography image enhancement using cuckoo search: a log transform based approach. J. Signal Inf. Process. 06(03), 14 (2015). https://doi.org/10.4236/jsip.2015.63023

    Article  Google Scholar 

  72. Issa, H.H., Ahmed, S.M.E.: FPGA implementation of floating point based cuckoo search algorithm. IEEE Access 7, 134434–134447 (2019). https://doi.org/10.1109/ACCESS.2019.2942205

    Article  Google Scholar 

  73. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimisation: a new method for optimising multi-modal functions. Int. J. Comput. Intell. Stud. 1(1), 93–119 (2009). https://doi.org/10.1504/ijcistudies.2009.025340

    Article  Google Scholar 

  74. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3(2), 87–124 (2009). https://doi.org/10.1007/s11721-008-0021-5

    Article  Google Scholar 

  75. Wu, B., Qian, C., Ni, W., Fan, S.: The improvement of glowworm swarm optimization for continuous optimization problems. Expert Syst. Appl. 39(7), 6335–6342 (2012). https://doi.org/10.1016/j.eswa.2011.12.017

    Article  Google Scholar 

  76. Ludwig, S.A.: Improved glowworm swarm optimization algorithm applied to multi-level thresholding. In: 2016 IEEE Congress on Evolutionary Computation (CEC), 24–29 July 2016, pp. 1533–1540 (2016). https://doi.org/10.1109/cec.2016.7743971

  77. Qiong, P., Liao, Y., Hao, P., He, X., Hui, C.: A self-adaptive step glowworm swarm optimization approach. Int. J. Comput. Intell. Appl. 18(01), 1950004 (2019). https://doi.org/10.1142/s1469026819500044

    Article  Google Scholar 

  78. Zheng, X., Gui, Z., Wang, Y.: Support vector machine model based on glowworm swarm optimization in application of vibrant fault diagnosis for hydro-turbine generating unit. In: 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), 3–5 Oct 2017, pp. 238–141 (2017). https://doi.org/10.1109/itoec.2017.8122427

  79. Senthilnath, J., Omkar, S.N., Mani, V., Tejovanth, N., Diwakar, P.G., et al.: Multi-spectral satellite image classification using glowworm swarm optimization. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, 24–29 July 2011, pp. 47–50 (2011). https://doi.org/10.1109/igarss.2011.6048894

  80. Zhou, Y.-Q., Ouyang, Z., Liu, J., Sang, G.: A novel K-means image clustering algorithm based on glowworm swarm optimization. Electr. Rev. 88, 266–270 (2012)

    Google Scholar 

  81. Zeng, T., Hua, Y., Zhao, X., Liu, T.: Research on glowworm swarm optimization localization algorithm based on wireless sensor network. In: 2016 IEEE international frequency control symposium (IFCS), 9–12 May 2016, pp. 1–5 (2016). https://doi.org/10.1109/fcs.2016.7546730

  82. Jiang, H., Tang, X.: Polarimetric MIMO radar target detection based on glowworm swarm optimization algorithm. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4–9 May 2014, pp. 805–809 (2014). https://doi.org/10.1109/icassp.2014.6853708

  83. Zhang, Y., Ma, X., Miao, Y.: Localization of multiple odor sources using modified glowworm swarm optimization with collective robots. In: Proceedings of the 30th Chinese Control Conference, 22–24 July 2011, pp. 1899–1904 (2011)

  84. Krishnanand, K.N., Ghose, D.: A glowworm swarm optimization based multi-robot system for signal source localization. In: Liu, D., Wang, L., Tan, K.C. (eds.) Design and Control of Intelligent Robotic Systems, pp. 49–68. Springer, Berlin (2009)

    Chapter  Google Scholar 

  85. Quang, N.N., Sanseverino, E.R., Silvestre, M.L.D., Madonia, A., Li, C., Guerrero, J.M.: Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids. In: 2014 AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 18–19 Sept 2014, pp. 1–6 (2014). https://doi.org/10.1109/aeit.2014.7002028

  86. Surender Reddy, S., Srinivasa Rathnam, C.: Optimal power flow using glowworm swarm optimization. Int. J. Electr. Power Energy Syst. 80, 128–139 (2016). https://doi.org/10.1016/j.ijepes.2016.01.036

    Article  Google Scholar 

  87. Wang, X., Yang, K., Zhou, X.: Two-stage glowworm swarm optimisation for economical operation of hydropower station. IET Renew. Power Gener. 12(9), 992–1003 (2018). https://doi.org/10.1049/iet-rpg.2017.0466

    Article  Google Scholar 

  88. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), 16–19 July 2000, vol. 1, pp. 84–88 (2000). https://doi.org/10.1109/cec.2000.870279

  89. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), 4–9 May 1998, pp. 69–73 (1998). https://doi.org/10.1109/icec.1998.699146

  90. Sedarous, S., El-Gokhy, S.M., Sallam, E.: Multi-swarm multi-objective optimization based on a hybrid strategy. Alex. Eng. J. 57(3), 1619–1629 (2018). https://doi.org/10.1016/j.aej.2017.06.017

    Article  Google Scholar 

  91. Lizzi, L., Viani, F., Azaro, R., Massa, A.: Optimization of a spline-shaped UWB antenna by PSO. IEEE Antennas Wirel. Propag. Lett. 6, 182–185 (2007). https://doi.org/10.1109/LAWP.2007.894157

    Article  Google Scholar 

  92. Li, Y., Shao, W., You, L., Wang, B.: An improved PSO algorithm and its application to UWB antenna design. IEEE Antennas Wirel. Propag. Lett. 12, 1236–1239 (2013). https://doi.org/10.1109/LAWP.2013.2283375

    Article  Google Scholar 

  93. Wang, Z., Zhang, T., Kong, L., Cui, G.: Prediction-based PSO algorithm for MIMO radar antenna deployment in dynamic environment. J. Eng. 2019(20), 6646–6650 (2019). https://doi.org/10.1049/joe.2019.0188

    Article  Google Scholar 

  94. Masehian, E., Sedighizadeh, D.: An improved particle swarm optimization method for motion planning of multiple robots. In: Martinoli, A, et al. (eds.) Distributed Autonomous Robotic Systems: The 10th International Symposium, pp. 175–188. Springer, Berlin (2013)

  95. Aziz, N.A.A., Ibrahim, Z.: Asynchronous particle swarm optimization for swarm robotics. Procedia Eng. 41, 951–957 (2012). https://doi.org/10.1016/j.proeng.2012.07.268

    Article  Google Scholar 

  96. Ayari, A., Bouamama, S.: A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization. Robotics Biomim 4(1), 8 (2017). https://doi.org/10.1186/s40638-017-0062-6

    Article  Google Scholar 

  97. Venkatalakshmi, K., Shalinie, S.M.: A customized particle swarm optimization algorithm for image enhancement. In: 2010 international conference on communication control and computing technologies, 7–9 Oct 2010, pp. 603–607 (2010). https://doi.org/10.1109/icccct.2010.5670768

  98. Farshi, T.R., Drake, J.H., Özcan, E.: A multimodal particle swarm optimization-based approach for image segmentation. Expert Syst. Appl. 149, 113233 (2020). https://doi.org/10.1016/j.eswa.2020.113233

    Article  Google Scholar 

  99. Mohsen, F., Hadhoud, M.M., Amin, K.: A new image segmentation method based on particle swarm optimization. Int. Arab Jo. Inf. Technol. 9, 487–493 (2012)

    Google Scholar 

  100. Esmin, A., Lambert-Torres, G.: Application of particle swarm optimization to optimal power system. Int. J. Innov. Comput. Inf. Control 8, 1705–1716 (2013)

    Google Scholar 

  101. Das, T.K., Venayagamoorthy, G.K.: Optimal design of power system stabilizers using a small population based PSO. In: 2006 IEEE Power Engineering Society General Meeting, 18–22 June 2006, p. 7 (2006). https://doi.org/10.1109/pes.2006.1709322

  102. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). https://doi.org/10.1109/59.898095

    Article  Google Scholar 

  103. Pandey, P., Soni, S.: Enhance clustering approach using PSO-A* for E-commerce. Int. J. Comput. Appl. 182, 57–60 (2019). https://doi.org/10.5120/ijca2019918405

    Article  Google Scholar 

  104. Yang, W., Xie, Q., Li, M.: Inventory control method of reverse logistics for shipping electronic commerce based on improved multi-objective particle swarm optimization algorithm. J. Coastal Res. 83, 786–790 (2018). https://doi.org/10.2112/si83-128.1

    Article  Google Scholar 

  105. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)

    Chapter  Google Scholar 

  106. Wang, Y., et al.: A novel bat algorithm with multiple strategies coupling for numerical optimization. Mathematics 7(2), 135 (2019)

    Article  Google Scholar 

  107. Swayamsiddha, S., Prateek, S.S., Singh, S.Parija, Pratihar, D.K.: Reporting cell planning-based cellular mobility management using a binary artificial bat algorithm. Heliyon 5(3), e01276 (2019). https://doi.org/10.1016/j.heliyon.2019.e01276

    Article  Google Scholar 

  108. Ng, C.K., Wu, C.H., Ip, W.H., Yung, K.L.: A smart bat algorithm for wireless sensor network deployment in 3-D environment. IEEE Commun. Lett. 22(10), 2120–2123 (2018). https://doi.org/10.1109/LCOMM.2018.2861766

    Article  Google Scholar 

  109. Adarsh, B.R., Raghunathan, T., Jayabarathi, T., Yang, X.-S.: Economic dispatch using chaotic bat algorithm. Energy 96, 666–675 (2016). https://doi.org/10.1016/j.energy.2015.12.096

    Article  Google Scholar 

  110. Biswal, S., Barisal, A.K., Behera, A., Prakash, T.: Optimal power dispatch using BAT algorithm. In: 2013 International Conference on Energy Efficient Technologies for Sustainability, 10–12 April 2013, pp. 1018–1023 (2013). https://doi.org/10.1109/iceets.2013.6533526

  111. Rahmani, M., Ghanbari, A., Ettefagh, M.M.: Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst. Appl. 56, 164–176 (2016). https://doi.org/10.1016/j.eswa.2016.03.006

    Article  Google Scholar 

  112. Rahmani, M., Ghanbari, A., Ettefagh, M.M.: A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J. Vib. Control 24(10), 2045–2060 (2018). https://doi.org/10.1177/1077546316676734

    Article  MathSciNet  Google Scholar 

  113. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

    Article  Google Scholar 

  114. Abbass, H.A.: MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 27–30 May 2001, vol. 1, pp. 207–214 (2001). https://doi.org/10.1109/cec.2001.934391

  115. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002). https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  116. Muller, S.D., Marchetto, J., Airaghi, S., Kournoutsakos, P.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6(1), 16–29 (2002). https://doi.org/10.1109/4235.985689

    Article  Google Scholar 

  117. Li, X., Shao, Z., Qian, J.I.: An optimizing method based on autonomous animate: fish swarm algorithm. Syst. Eng. Theory Practice 22, 32–38 (2002)

    Google Scholar 

  118. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resourc. Plan. Manag. 129(3), 210–225 (2003). https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)

    Article  Google Scholar 

  119. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Ant Colony Optimization and Swarm Intelligence. Springer, Berlin, pp. 83–94

  120. Yang, X.-S.: Engineering optimizations via nature-inspired virtual bee algorithms. In: Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. Springer, Berlin, pp. 317–323 (2005)

  121. Teodorović, D., Dell’Orco, M.: Bee colony optimization—A cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation, pp. 51–60 (2005)

  122. Li, W.H., et al.: Function optimization method based on bacterial colony chemotaxis. J. Circuits Syst. 10(01), 58–63 (2005)

    Google Scholar 

  123. Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Computational Intelligence and Bioinspired Systems. Springer, Berlin, pp. 318–325 (2005)

  124. Haddad, O.B., Afshar, A., Mariño, M.A.: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20(5), 661–680 (2006). https://doi.org/10.1007/s11269-005-9001-3

    Article  Google Scholar 

  125. Chu, S.-C., Tsai, P.-W., Pan, J.-S.: Cat swarm optimization. In: PRICAI 2006: Trends in Artificial Intelligence. Springer, Berlin, pp. 854–858 (2006)

  126. Bastos-Filho, C., Lima Neto, F., Lins, A., Nascimento, A., Lima, M.: A novel search algorithm based on fish school behavior, pp. 2646–2651 (2008)

  127. Havens, T.C., Spain, C.J., Salmon, N.G., Keller, J.M.: Roach Infestation Optimization. In: 2008 IEEE Swarm Intelligence Symposium, 21–23 Sept 2008, pp 1–7 (2008). https://doi.org/10.1109/sis.2008.4668317

  128. Ying, C., Hua, M., Huilian, L., Zhen, J., Wu, Q.H.: A fast bacterial swarming algorithm for high-dimensional function optimization. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1–6 June 2008, pp. 3135–3140 (2008). https://doi.org/10.1109/cec.2008.4631222

  129. Padró, F., Navarro, J.: Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour (2009). https://doi.org/10.1145/1543834.1543949

  130. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 13(5), 973–990 (2009). https://doi.org/10.1109/TEVC.2009.2011992

    Article  Google Scholar 

  131. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications. Springer, Berlin, pp. 169–178 (2009)

  132. Marinakis, Y., Marinaki, M., Matsatsinis, N.: A bumble bees mating optimization algorithm for global unconstrained optimization problems. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 305–318. Springer, Berlin (2010)

    Chapter  Google Scholar 

  133. Zhao Hui, C., Hai Yan, T.: Cockroach swarm optimization. In: Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET’10), vol. 6 (2010). https://doi.org/10.1109/iccet.2010.5485993

  134. Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math Appl. 60(7), 2087–2098 (2010). https://doi.org/10.1016/j.camwa.2010.07.049

    Article  MATH  Google Scholar 

  135. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012). https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  136. Tang, R., Fong, S., Yang, X., Deb, S.: Wolf search algorithm with ephemeral memory. In: Seventh International Conference on Digital Information Management (ICDIM 2012), 22–24 Aug 2012, pp. 165–172 (2012). https://doi.org/10.1109/icdim.2012.6360147

  137. Niu, B., Wang, H.: Bacterial colony optimization. Discrete Dyn. Nat. Soc. 2012, 1–29 (2012)

    MathSciNet  MATH  Google Scholar 

  138. B. R. Rajakumar, “The Lion’s Algorithm: A New Nature-Inspired Search Algorithm,” Procedia Technology, vol. 6, pp. 126-135, 2012/01/01/2012, doi: https://doi.org/10.1016/j.protcy.2012.10.016

  139. Taherdangkoo, M.: A novel meta-heuristic algorithm for numerical function optimization: blind, naked mole-rats (BNMR) algorithm. Sci. Res. Essays 7(41), 3566–3583 (2012)

    Article  Google Scholar 

  140. Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012). https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  141. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013). https://doi.org/10.1016/j.eswa.2013.05.041

    Article  Google Scholar 

  142. Eesa, A., Mohsin Abdulazeez, A., Orman, Z.: A New Tool for Global Optimization Problems-Cuttlefish Algorithm (2014)

  143. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46-61, 2014/03/01/2014, doi: https://doi.org/10.1016/j.advengsoft.2013.12.007

  144. Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 6(1), 31–47 (2014). https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  145. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24(7), 1867–1877 (2014). https://doi.org/10.1007/s00521-013-1433-8

    Article  Google Scholar 

  146. Wang, G.-G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  147. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  148. Wang, G.-G., Deb, S., Coelho, L.: Elephant Herding Optimization (2015)

  149. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  150. Wu, T.-Q., Yao, M., Yang, J.-H.: Dolphin swarm algorithm. Front. Inf. Technol. Electron. Eng. 17(8), 717–729 (2016). https://doi.org/10.1631/fitee.1500287

    Article  Google Scholar 

  151. Topal, A.O., Altun, O.: A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf. Sci. 354, 222–235 (2016). https://doi.org/10.1016/j.ins.2016.03.025

    Article  Google Scholar 

  152. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  153. Chen, Y., Peng, B.: Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework. Appl. Soft Comput. 43, 357–371 (2016). https://doi.org/10.1016/j.asoc.2016.02.045

    Article  Google Scholar 

  154. Chen, Y., Wang, Z., Yang, E., Li, Y.: Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm. In: 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), 15–17 Dec 2016, pp. 116–121. (2016). https://doi.org/10.1109/skima.2016.7916207

  155. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  156. Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  157. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  158. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  159. Shamsaldin, A.S., Rashid, T.A., Al-Rashid Agha, R.A., Al-Salihi, N.K., Mohammadi, M.: Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. J. Comput. Des. Eng. 6(4), 562–583 (2019). https://doi.org/10.1016/j.jcde.2019.04.004

    Article  Google Scholar 

  160. Abdullah, J.M., Ahmed, T.: Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7, 43473–43486 (2019). https://doi.org/10.1109/ACCESS.2019.2907012

    Article  Google Scholar 

  161. Khan, T.A., Ling, S.H., Mohan, A.S.: Advanced particle swarm optimization algorithm with improved velocity update strategy. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 7–10 Oct 2018, pp. 3944–3949 (2018). https://doi.org/10.1109/smc.2018.00669

  162. Coco, S., Laudani, A., Riganti Fulginei, F., Salvini, A.: TEAM problem 22 approached by a hybrid artificial life method. COMPEL Int. J. Comput. Mat. Electr. Electr. Eng. 31(3), 816–826 (2012). https://doi.org/10.1108/03321641211209726

    Article  Google Scholar 

  163. Rehman, O.U., Rehman, S.U., Tu, S., Khan, S., Waqas, M., Yang, S.: A quantum particle swarm optimization method with fitness selection methodology for electromagnetic inverse problems. IEEE Access 6, 63155–63163 (2018). https://doi.org/10.1109/ACCESS.2018.2873670

    Article  Google Scholar 

  164. Guimaraes, F.G., Campelo, F., Saldanha, R.R., Igarashi, H., Takahashi, R.H.C., Ramirez, J.A.: A multiobjective proposal for the TEAM benchmark problem 22. IEEE Trans. Magn. 42(4), 1471–1474 (2006). https://doi.org/10.1109/TMAG.2006.871570

    Article  Google Scholar 

  165. Khan, S.U., Yang, S., Wang, L., Liu, L.: A modified particle swarm optimization algorithm for global optimizations of inverse problems. IEEE Trans. Magn. 52(3), 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2487678

    Article  Google Scholar 

  166. Alotto, P., et al.: SMES optimization benchmark extended: introducing Pareto optimal solutions into TEAM22. IEEE Trans. Magn. 44(6), 1066–1069 (2008). https://doi.org/10.1109/TMAG.2007.916091

    Article  Google Scholar 

  167. Karban, P., Kropík, P., Kotlan, V., Doležel, I.: Bayes approach to solving T.E.A.M. benchmark problems 22 and 25 and its comparison with other optimization techniques. Appl. Math. Comput. 319, 681–692 (2018). https://doi.org/10.1016/j.amc.2017.07.043

    Article  MathSciNet  MATH  Google Scholar 

  168. Coelho, L., Alotto, P.: Global optimization of electromagnetic devices using an exponential quantum-behaved particle swarm optimizer. IEEE Trans. Magn. 44, 1074–1077 (2008). https://doi.org/10.1109/tmag.2007.916032

    Article  Google Scholar 

  169. Alotto, U.B.P.G., Freschi, F., Jaindl, M., et al.: Repetto: TEAM Workshop Problem 22: SMES Optimization Benchmark

  170. Duan, Q., Shao, C., Li, X., Shi, Y.: Visualizing the Search Dynamics in a High-Dimensional Space for a Particle Swarm Optimizer, pp. 994–1002 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talha Ali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.A., Ling, S.H. A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem. J Comput Electron 19, 1606–1628 (2020). https://doi.org/10.1007/s10825-020-01567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01567-6

Keywords

Navigation