[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Swarm Intelligence

  • Chapter
  • First Online:
Handbook of Metaheuristics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 272))

Abstract

Swarm Intelligence (SI) is an Artificial Intelligence (AI) discipline that studies the collective behaviours of artificial and natural systems such as those of insects or animals. SI is seen as a new concept of AI and is becoming increasingly accepted in the literature. SI techniques are typically inspired by natural phenomena, and they have exhibited remarkable capabilities in solving problems that are often perceived to be challenging to conventional computational techniques. Although an SI system lacks a centralized control, the system at the swarm (or population) level reveals remarkable complex and self-organizing behaviours, often as the result of local interactions among individuals in the swarm as well as individuals with the environment, based on very simple interaction rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 January 2020

    The original version of this chapter contained an acknowledgement section which needed revision. The acknowledgement section of chapter 11 has been revised in this updated version.

References

  1. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in Robots and Biological Systems: Towards a New Bionics? ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin, 1993), pp. 703–712

    Google Scholar 

  2. S. Bird, X. Li, Adaptively choosing niching parameters in a PSO, in Proceedings of Genetic and Evolutionary Computation Conference, July 2006, ed. by M. Cattolico (ACM Press, New York, 2006), pp. 3–10

    Google Scholar 

  3. T.M. Blackwell, P. Bentley, Dynamic search with charged swarms, in Proceedings of Workshop on Evolutionary Algorithms Dynamic Optimization Problems (2002), pp. 19–26

    Google Scholar 

  4. T.M. Blackwell, P.J. Bentley, Improvised music with swarms, in Proceedings of Congress on Evolutionary Computation, ed. by D.B. Fogel, M.A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, M. Shackleton (IEEE Press, Piscataway, 2002), pp. 1462–1467

    Google Scholar 

  5. T.M. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments, in Applications of Evolutionary Computing, LNCS 3005 (Springer, Berlin, 2004), pp. 489–500

    Google Scholar 

  6. T.M. Blackwell, J. Branke, Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

    Google Scholar 

  7. T.M. Blackwell, J. Branke, X. Li, Particle swarms for dynamic optimization problems, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D.D. Merkle (Springer, Berlin, 2008), pp. 193–217

    Google Scholar 

  8. C. Blum, X. Li, Swarm intelligence in optimization, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 43–85

    Google Scholar 

  9. C. Blum, D. Merkle, Swarm Intelligence: Introduction and Applications. Natural Computing Series (Springer, Berlin, 2008)

    Google Scholar 

  10. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)

    Google Scholar 

  11. M.R. Bonyadi, Z. Michalewicz, Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2016)

    Google Scholar 

  12. J. Branke, Evolutionary Optimization in Dynamic Environments (Kluwer Academic, Norwell, 2002)

    Google Scholar 

  13. D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in IEEE Swarm Intelligence Symposium (June 2007), pp. 120–127

    Google Scholar 

  14. R. Brits, A.P. Engelbrecht, F. van den Bergh, A niching particle swarm optimizer, in Proceedings of 4th Asia-Pacific Conference on Simulated Evolution and Learning (2002), pp. 692–696

    Google Scholar 

  15. A. Carlisle, G. Dozier, Adapting particle swarm optimization to dynamic environments, in Proceedings of International Conference on Artificial Intelligence, Las Vegas, NV (2000), pp. 429–434

    Google Scholar 

  16. A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle swarm optimizer, in Proceedings of World Automation Congress, Orlando, FL (2002), pp. 265–270

    Google Scholar 

  17. R. Carrese, X. Li, Preference-based multiobjective particle swarm optimization for airfoil design, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015), pp. 1311–1331

    Google Scholar 

  18. R. Carrese, A. Sobester, H. Winarto, X. Li, Swarm heuristic for identifying preferred solutions in surrogate-based multi-objective engineering design. Am. Inst. Aeronaut. Astronaut. J. 49(7), 1437–1449 (2011)

    Google Scholar 

  19. C.W. Cleghorn, Particle Swarm Optimization: Empirical and Theoretical Stability Analysis, Ph.D. thesis, University of Pretoria, 2017

    Google Scholar 

  20. M. Clerc, Standard particle swarm optimisation. 15 pages (2012)

    Google Scholar 

  21. M. Clerc, Discrete particle swarm optimization, illustrated by the traveling salesman problem, in New Optimization Techniques in Engineering (Springer, Heidelberg, 2004), pp. 219–239

    Google Scholar 

  22. M. Clerc, Confinements and biases in particle swarm optimisation, Technical report, Open archive HAL (2006). http://hal.archives-ouvertes.fr/, ref. hal-00122799

  23. M. Clerc, Particle Swarm Optimization (ISTE Ltd, Washington, DC, 2006)

    Google Scholar 

  24. M. Clerc, Guided Randomness in Optimization (ISTE (International Scientific and Technical Encyclopedia)/Wiley, Washington, DC/Hoboken, 2015)

    Google Scholar 

  25. M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Google Scholar 

  26. C.A.C. Coello, M. Salazar Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of Congress on Evolutionary Computation, Piscataway, NJ, May 2002, vol. 2, pp. 1051–1056

    Google Scholar 

  27. K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. thesis, University of Michigan, 1975

    Google Scholar 

  28. K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  29. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

    Google Scholar 

  30. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of IEEE International Conference Evolutionary Computation (2000), pp. 84–88

    Google Scholar 

  31. R.C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in Proceedings of Congress on Evolutionary Computation (IEEE Press, 2001), pp. 94–100

    Google Scholar 

  32. J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence, in Proceedings of U.K. Workshop on Computational Intelligence, Birmingham, September 2002, pp. 37–44

    Google Scholar 

  33. D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in Proceedings of Second International Conference on Genetic Algorithms, ed. by J.J. Grefenstette, pp. 41–49 (1987)

    Google Scholar 

  34. E.F.G. Goldbarg, G.R. De Souza, M.C. Goldbarg, Particle swarm for the traveling salesman problem, in Evolutionary Computation in Combinatorial Optimization: Proceedings of the 6th European Conference, EvoCOP 2006, ed. by J. Gottlieb, G. Raidl, R. Günther. LNCS, vol. 3906 (Springer, Berlin, 2006), pp. 99–110

    Google Scholar 

  35. R. Groß, M. Bonani, F. Mondada, M. Dorigo, Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)

    Google Scholar 

  36. G.R. Harik, Finding multimodal solutions using restricted tournament selection, in Proceedings of Sixth International Conference on Genetic Algorithms, ed. by L. Eshelman (Morgan Kaufmann, San Francisco, 1995), pp. 24–31

    Google Scholar 

  37. S. Helwig, R. Wanka, Particle swarm optimization in high-dimensional bounded search spaces, in Proceedings of IEEE Swarm Intelligence Symposium, April 2007 (IEEE Press, Honolulu, 2007), pp. 198–205

    Google Scholar 

  38. N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in Proceedings of IEEE Swarm Intelligence Symposium (2003), pp. 72–79

    Google Scholar 

  39. X. Hu, R.C. Eberhart, Adaptive particle swarm optimisation: detection and response to dynamic systems, in Proceedings of Congress on Evolutionary Computation (2002), pp. 1666–1670

    Google Scholar 

  40. S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. B 35(6), 1272–1282 (2005)

    Google Scholar 

  41. J. Kennedy, The behaviour of particle, in Proceedings of 7th Annual Conference Evolutionary Programming, San Diego, CA (1998), pp. 581–589

    Google Scholar 

  42. J. Kennedy, Bare bones particle swarms, in Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, IN (2003), pp. 80–87

    Google Scholar 

  43. J. Kennedy, In search of the essential particle swarm, in Proceedings of IEEE Congress on Evolutionary Computation (IEEE Press, 2006), pp. 6158–6165

    Google Scholar 

  44. J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, ed. by A.Y. Zomaya (Springer, Boston, 2006), pp. 187–219

    Google Scholar 

  45. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. 4 (IEEE Press, Piscataway, 1995), pp. 1942–1948

    Google Scholar 

  46. J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence (Morgan Kaufmann, San Francisco, 2001)

    Google Scholar 

  47. X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization, in Proceedings of Genetic and Evolutionary Computation Conference, Part I, ed. by Erick Cantú-Paz et al. LNCS, vol. 2723 (Springer, Berlin, 2003), pp. 37–48

    Google Scholar 

  48. X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by K. Deb. LNCS, vol. 3102 (2004), pp. 105–116

    Google Scholar 

  49. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

    Google Scholar 

  50. X. Li, Developing niching algorithms in particle swarm optimization, in Handbook of Swarm Intelligence ed. by B. Panigrahi, Y. Shi, M.-H. Lim. Adaptation, Learning, and Optimization, vol. 8 (Springer, Berlin, 2011), pp. 67–88

    Google Scholar 

  51. X. Li, K.H. Dam, Comparing particle swarms for tracking extrema in dynamic environments, in Proceedings of Congress on Evolutionary Computation (2003), pp. 1772–1779

    Google Scholar 

  52. J.P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson, A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

    Google Scholar 

  53. X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic environment, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by M. Cattolico (ACM Press, New York, 2006), pp. 51–58

    Google Scholar 

  54. X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization, Technical report, Evolutionary Computation and Machine Learning Group, RMIT University, 2013

    Google Scholar 

  55. J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Google Scholar 

  56. M. Lovbjerg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in Proceedings of Congress on Evolutionary Computation (IEEE Press, 2002), pp. 1588–1593

    Google Scholar 

  57. A. Mah, S.I. Hossain, S. Akter, A comparative study of prominent particle swarm optimization based methods to solve traveling salesman problem. Int. J. Swarm Intell. Evol. Comput. 5(3), 1–10 (2016)

    Google Scholar 

  58. D. Martens, B. Baesens, T. Fawcett, Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)

    Google Scholar 

  59. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Google Scholar 

  60. J. Moore, R. Chapman, Application of Particle Swarm to Multiobjective Optimization (Department of Computer Science and Software Engineering, Auburn University, 1999)

    Google Scholar 

  61. E. Ozcan, C.K. Mohan, Analysis of a simple particle swarm optimization system, in Intelligent Engineering Systems through Artificial Neural Networks (1998), pp. 253–258

    Google Scholar 

  62. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

    Google Scholar 

  63. D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

    Google Scholar 

  64. K. Parsopoulos, M. Vrahatis, Modification of the particle swarm optimizer for locating all the global minima, in Artificial Neural Networks and Genetic Algorithms, ed. by V. Kurkova, N. Steele, R. Neruda, M. Karny (Springer, Berlin, 2001), pp. 324–327

    Google Scholar 

  65. K. Parsopoulos, M. Vrahatis, Particle swarm optimization method in multiobjective problems, in Proceedings of ACM Symposium on Applied Computing, Madrid (ACM Press, New York, 2002), pp. 603–607

    Google Scholar 

  66. A. Pétrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings of 3rd IEEE International Conference on Evolutionary Computation (1996), pp. 798–803

    Google Scholar 

  67. R. Poli, Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

    Google Scholar 

  68. B.Y. Qu, P.N. Suganthan, S. Das, A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

    Google Scholar 

  69. M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    Google Scholar 

  70. T. Richer, T. Blackwell, The L\(\acute{e}\) vy particle swarm, in Proceedings of Congress on Evolutionary Computation (2006), pp. 808– 815

    Google Scholar 

  71. J. Riget, J. Vesterstroem, A diversity-guided particle swarm optimizer - the ARPSO, Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002

    Google Scholar 

  72. E. Şahin, Swarm robotics: from sources of inspiration to domains of application, in Swarm Robotics: SAB 2004 International Workshop (Revised Selected Papers), ed. by E. Şahin, W.M. Spears (Springer, Berlin, 2005), pp. 10–20

    Google Scholar 

  73. E. Şahin, S. Girgin, L. Bayindir, A.E. Turgut, Swarm robotics, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 87–100

    Google Scholar 

  74. R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions - a survey of some theoretical and practical aspects of genetic algorithms. Biosystems 39(3), 263–278 (1996)

    Google Scholar 

  75. W.M. Spears, D.T. Green, D.F. Spears, Biases in particle swarm optimization. Int. J. Swarm. Intell. Res. 1(2), 34–57 (2010)

    Google Scholar 

  76. P.N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Congress on Evolutionary Computation (CEC 1999), Washington (1999), pp. 1958–1962

    Google Scholar 

  77. F. van den Bergh, Analysis of Particle Swarm Optimizers, Ph.D. thesis, Department of Computer Science, University of Pretoria, Pretoria, 2002

    Google Scholar 

  78. F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Google Scholar 

  79. F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories. Inform. Sci. 176, 937–971 (2006)

    Google Scholar 

  80. K. Veeramachaneni, T. Peram, C. Mohan, L. Osadciw, Optimization using particle swarm with near neighbor interactions, in Proceedings of Genetic and Evolutionary Computation Conference, Chicago, IL (2003), pp. 110 – 121

    Google Scholar 

  81. M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, A. Elmaghraby, An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 289–301 (2004)

    Google Scholar 

  82. U.K. Wickramasinghe, X. Li, Using a distance metric to guide PSO algorithms for many-objective optimization, in Proceedings of Genetic and Evolutionary Computation Conference (ACM Press, New York, 2009), pp. 667–674

    Google Scholar 

  83. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2001)

    Google Scholar 

  84. M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements, in Proceedings of Congress on Evolutionary Computation (2013), pp. 2337–2344

    Google Scholar 

Download references

Acknowledgements

This chapter is a further extension to an early EOLSS online article by the first author (Li, X. “Swarm intelligence” Computational Intelligence (6.44.40-50 UNESCO Encyclopedia of Life Support Systems), EOLSS Publishers, Oxford, UK, Vol. II, pp. 87–112, 2015), with new sections and references included to reflect the more recent developments on this topic. The authors would also like to thank Prof. Jean-Yves Potvin for his valuable feedback, which has substantially improved the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Clerc, M. (2019). Swarm Intelligence. In: Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-91086-4_11

Download citation

Publish with us

Policies and ethics