[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Guest editorial: special issue on utility-based data mining

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Brydon M, Gemino A (2008) Classification trees and decision-analytic feedforward control: a case study from the video game industry. Data Min Knowl Discov 17(2). doi:10.1007/s10618-007-0086-6

  • Chawla NV, Cieslak DA, Hall LO, Joshi A (2008) Automatically countering imbalance and its empirical relationship to cost. Data Min Knowl Discov 17(2). doi:10.1007/s10618-008-0087-0

  • Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15(2): 201–221

    Google Scholar 

  • Fawcett T (2008) PRIE: a system for generating rulelists to maximize ROC performance. Data Min Knowl Discov 17(2). doi:10.1007/s10618-008-0089-7

  • Forman G (2008) Quantifying counts and costs via classification. Data Min Knowl Discov 17(2). doi:10.1007/s10618-008-0097-y

  • Melville P, Yang SM, Saar-Tsechansky M, Mooney RJ (2005) Active learning for probability estimation using Jensen-Shannon divergence. In: Proceedings of the 16th European conference on machine learning (ECML), Porto, Portugal

  • Rokach L, Naamani L, Shmilovici A (2008) Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns. Data Min Knowl Discov 17(2). doi:10.1007/s10618-008-0105-2

  • Saar-Tsechansky M, Provost F (2004) Active sampling for class probability estimation and ranking. Mach Learn 54(2): 153–178. doi:10.1023/B:MACH.0000011806.12374.c3

    Article  MATH  Google Scholar 

  • Saar-Tsechansky M, Provost F (2007) Decision-centric active learning of binary-outcome models. Inf Syst Res 18(1): 1–19. doi:10.1287/isre.1070.0111

    Article  Google Scholar 

  • Sen P, Getoor L (2008) Cost-sensitive learning with conditional Markov networks. Data Min Knowl Discov 17(2). doi:10.1007/s10618-008-0090-5

  • Shen Y, Zhang Z, Yang Q (2002) Objective-oriented utility-based association mining. In: Proceedings of the 2002 IEEE international conference on data mining, Maebashi City, Japan, pp 426–433

  • Weiss GM, Tian Y (2008) Maximizing classifier utility when there are data acquisition and modeling costs. Data Min Knowl Discov 17(2). doi:10.1007/s10618-007-0082-x

  • Weiss GM, Saar-Tsechansky M, Zadrozny B (eds) (2005) Proceedings of the first international workshop on utility-based data mining, August 2005. ACM Press, Chicago, IL

  • Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction databases. Data Knowl Eng 59(3): 603–626. doi:10.1016/j.datak.2005.10.004

    Article  Google Scholar 

  • Zadrozny B, Weiss GM, Saar-Tsechansky M (eds) (2006) Proceedings of the second international workshop on utility-based data mining, August 2006. ACM Press, Philadelphia, PA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, G.M., Zadrozny, B. & Saar-Tsechansky, M. Guest editorial: special issue on utility-based data mining. Data Min Knowl Disc 17, 129–135 (2008). https://doi.org/10.1007/s10618-008-0117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-008-0117-y

Navigation