Abstract
We discretize a directionally sparse parabolic control problem governed by a linear equation by means of control approximations that are piecewise constant in time and continuous piecewise linear in space. By discretizing the objective functional with the help of appropriate numerical quadrature formulas, we are able to show that the discrete optimal solution exhibits a directional sparse pattern alike the one enjoyed by the continuous solution. Error estimates are obtained and a comparison with the cases of having piecewise approximations of the control or a semilinear state equation are discussed. Numerical experiments that illustrate the theoretical results are included.
Similar content being viewed by others
References
Boulanger, A.C., Trautmann, P.: Sparse optimal control of the KdV-Burgers equation on a bounded domain. SIAM J. Control Optim. 55(6), 3673–3706 (2017). https://doi.org/10.1137/15M1020745
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-3658-8
Carstensen, C.: Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999). https://doi.org/10.1051/m2an:1999140
Casas, E., Clason, C., Kunisch, K.: Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50(4), 1735–1752 (2012). https://doi.org/10.1137/110843216
Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013). https://doi.org/10.1137/120872395
Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122(4), 645–669 (2012). https://doi.org/10.1007/s00211-012-0475-7
Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22(3), 795–820 (2012). https://doi.org/10.1137/110834366
Casas, E., Herzog, R., Wachsmuth, G.: Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var. 23(1), 263–295 (2017). https://doi.org/10.1051/cocv/2015048
Casas, E., Kunisch, K.: Parabolic control problems in space-time measure spaces. ESAIM Control Optim. Calc. Var. 22(2), 355–370 (2016). https://doi.org/10.1051/cocv/2015008
Casas, E., Mateos, M., Rösch, A.: Finite element approximation of sparse parabolic control problems. Math. Control Rel. Fields 7(3), 397–417 (2017). https://doi.org/10.3934/mcrf.2017014
Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53(1), 173–206 (2012). https://doi.org/10.1007/s10589-011-9453-8
Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62(4), 311–318 (2013). https://doi.org/10.1016/j.sysconle.2013.01.001
Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17(1), 243–266 (2011). https://doi.org/10.1051/cocv/2010003
Clason, C., Kunisch, K.: A measure space approach to optimal source placement. Comput. Optim. Appl. 53(1), 155–171 (2012). https://doi.org/10.1007/s10589-011-9444-9
de los Reyes, J.C., Meyer, C., Vexler, B.: Finite element error analysis for state-constrained optimal control of the Stokes equations. Control Cybernet. 37(2), 251–284 (2008). http://control.ibspan.waw.pl:3000/contents/export?filename=2008-2-01_reyes_et_al.pdf
Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012). https://doi.org/10.1137/100815037
Kunisch, K., Pieper, K., Vexler, B.: Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52(5), 3078–3108 (2014). https://doi.org/10.1137/140959055
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, Berlin (1971)
Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008). https://doi.org/10.1137/070694016
Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. II. Problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008). https://doi.org/10.1137/070694028
Meidner D., Vexler B.: Optimal error estimates for fully discrete galerkin approximations of semilinear parabolic equations (2017). arXiv:1707.07889v1
Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2012). https://doi.org/10.1007/s00211-011-0409-9
Pieper, K.: Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. Ph.D. thesis, Technische Universität München (2015). http://mediatum.ub.tum.de/node?id=1241413
Pieper, K., Vexler, B.: A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51(4), 2788–2808 (2013). https://doi.org/10.1137/120889137
Raviart, P.A., Thomas, J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)
Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009). https://doi.org/10.1007/s10589-007-9150-9
Trautmann, P.: Measure valued optimal control problems governed by wave-like equations. Ph.D. thesis, University of Graz (2015)
Tröltzsch, F.: Optimal control of partial differential equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010). https://doi.org/10.1090/gsm/112. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels
Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011). https://doi.org/10.1051/cocv/2010027
Author information
Authors and Affiliations
Corresponding author
Additional information
Eduardo Casas and Mariano Mateos were partially supported by the Spanish Ministerio de Economía y Competitividad under Projects MTM2014-57531-P and MTM2017-83185-P.
Rights and permissions
About this article
Cite this article
Casas, E., Mateos, M. & Rösch, A. Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity. Comput Optim Appl 70, 239–266 (2018). https://doi.org/10.1007/s10589-018-9979-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-9979-0
Keywords
- Optimal control
- Parabolic equations
- Directionally sparse solutions
- Finite element approximation
- Numerical quadrature
- Error estimates