[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Adaptive and nonadaptive approaches to statistically based methods for solving stochastic linear programs: a computational investigation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Large scale stochastic linear programs are typically solved using a combination of mathematical programming techniques and sample-based approximations. Some methods are designed to permit sample sizes to adapt to information obtained during the solution process, while others are not. In this paper, we experimentally examine the relative merits and challenges of approximations based on adaptive samples and those based on non-adaptive samples. We focus our attention on Stochastic Decomposition (SD) as an adaptive technique and Sample Average Approximation (SAA) as a non-adaptive technique. Our results indicate that there can be minimal difference in the quality of the solutions provided by these methods, although comparing their computational requirements would be more challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benders, J.F.: Partitioning procedures for solving mixed variables programming problems. Numer. Math. 4, 238–252 (1961)

    Article  MathSciNet  Google Scholar 

  2. Birge, J.: The value of the stochastic solution in stochastic linear programs with fixed recourse. Math. Program. 24, 314–325 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34, 384–392 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Efron, B.: Another look at the jackknife. Ann. Stat. 7, 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Higle, J.L., Sen, S.: Statistical verification of optimality conditions. Ann. Oper. Res. 30, 215–240 (1991a)

    Article  MathSciNet  MATH  Google Scholar 

  7. Higle, J.L., Sen, S.: Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991b)

    Article  MathSciNet  MATH  Google Scholar 

  8. Higle, J.L., Sen, S.: Finite master programs in stochastic decomposition. Math. Program. 67, 143–168 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Higle, J.L., Sen, S.: Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Kluwer Academic, Norwell (1996)

    MATH  Google Scholar 

  10. Higle, J.L., Sen, S.: Statistical approximations for stochastic linear programming problems. Ann. Oper. Res. 85, 173–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  12. King, A., Wets, R.J.: Epi-Consistency of convex stochastic programs. Stochastics 34, 83–91 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Linderoth, J.T., Shapiro, A., Wright, S.J.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 219–245 (2006)

    Article  MathSciNet  Google Scholar 

  15. Mak, W.K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Plambeck, E., Fu, B.-R., Robinson, S., Suri, R.: Sample-path optimization of convex stochastic performance functions. Math. Program. B 75, 137–176 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Article  MATH  Google Scholar 

  18. Sen, S., Doverspike, R.D., Cosares, S.: Network planning with random demand. Telecommun. Syst. 3, 11–30 (1994)

    Article  Google Scholar 

  19. Sen, S., Mai, J., Higle, J.: Solution of large scale stochastic programs with stochastic decomposition. In: Hager, W., Hearn, D., Pardolos, P. (eds.) Large Scale Optimization: State of the Art 1993. Kluwer Academic, Norwell (1994)

    Google Scholar 

  20. Shapiro, A.: Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30, 169–186 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapiro, A.: Stochastic programming by Monte Carlo methods. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.4010&rep=rep1&type=pdf

  22. Shapiro, A., Homem-de-Mello, T., Kim, J.: Conditioning of convex piecewise linear stochastic programs. Math. Program. 94(1), 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Slyke, R., Wets, R.J.-B.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, L.: Available at (2010). http://www.ie.tsinghua.edu.cn/~lzhao/resources/stoch-prog.htm, as of January 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Higle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higle, J.L., Zhao, L. Adaptive and nonadaptive approaches to statistically based methods for solving stochastic linear programs: a computational investigation. Comput Optim Appl 51, 509–532 (2012). https://doi.org/10.1007/s10589-010-9366-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9366-y

Keywords

Navigation