[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Platelets, circulating tumor cells, and the circulome

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Platelets are cytoplasmic fragments generated by megakaryocytes in the bone marrow and do not possess a nucleus. They contribute to the “Circulome” consisting of all circulating cells, factors and macromolecules such as cfDNA. Their primary function is to recognize vascular lesions and initiate thrombus formation that ceases bleeding. This distinctive characteristic of platelets also contributes to cancer and its progression. The ability of platelets to recognize and interact with other cells and neighboring platelets enables them to interact with tumor cells in the circulation. Receptor recognition and factor mediated crosstalk between tumor cells and platelets stimulate platelet activation, release of factors, and aggregation that promotes tumor cell survival and cancer progression. This review describes platelet: (i) contributions to the “Circulome” (ii) their importance as diagnostic tools in predicting cancer risk and (iii) therapies targeting platelet activation in inhibiting tumor progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100) ra81 doi:10.1126/scisignal.2000610.

  2. Ribeiro, M. F., Zhu, H., Millard, R. W., & Fan, G. C. (2013). Exosomes function in pro- and anti-angiogenesis. Curr Angiogenes, 2(1), 54–59. doi:10.2174/22115528113020020001.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39(1), 133–144. doi:10.1016/j.molcel.2010.06.010.

    Article  CAS  PubMed  Google Scholar 

  4. Pulliam, L., & Gupta, A. (2015). Modulation of cellular function through immune-activated exosomes. DNA and Cell Biology, 34(7), 459–463. doi:10.1089/dna.2015.2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rak, J. (2013). Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Frontiers in Pharmacology, 4, 21. doi:10.3389/fphar.2013.00021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Azmi, A. S., Bao, B., & Sarkar, F. H. (2013). Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Reviews, 32(3–4), 623–642. doi:10.1007/s10555-013-9441-9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24. doi:10.1016/j.gpb.2015.02.001.

    Article  Google Scholar 

  8. Lopes-Rodrigues, V., Di Luca, A., Sousa, D., Seca, H., Meleady, P., Henry, M., et al. (2016). Multidrug resistant tumour cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells. Biochimica et Biophysica Acta, 1860(3), 618–627. doi:10.1016/j.bbagen.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  9. Ciardiello, C., Cavallini, L., Spinelli, C., Yang, J., Reis-Sobreiro, M., de Candia, P., et al. (2016). Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. International Journal of Molecular Sciences, 17(2). doi:10.3390/ijms17020175.

  10. Yu, S., Cao, H., Shen, B., Feng, J. (2015). Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget, 6(35), 37151–37168, doi:10.18632/oncotarget.6022.

  11. Davila, M., Robles-Carrillo, L., Unruh, D., Huo, Q., Gardiner, C., Sargent, I. L., et al. (2014). Microparticle association and heterogeneity of tumor-derived tissue factor in plasma: is it important for coagulation activation? Journal of Thrombosis and Haemostasis, 12(2), 186–196. doi:10.1111/jth.12475.

    Article  CAS  PubMed  Google Scholar 

  12. Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., et al. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. doi:10.1038/nature14581.

  13. Thakur, B. K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., et al. (2014). Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research, 24(6), 766–769. doi:10.1038/cr.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Botti, G., Marra, L., Malzone, M. G., Anniciello, A., Botti, C., Franco, R., et al. (2017). LncRNA HOTAIR as prognostic circulating marker and potential therapeutic target in patients with tumor diseases. Current Drug Targets. 18(1), 27-34.

  15. Fesler, A., Jiang, J., Zhai, H., & Ju, J. (2014). Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Molecular Diagnosis & Therapy, 18(3), 303–308. doi:10.1007/s40291-014-0089-0.

    Article  CAS  Google Scholar 

  16. Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., Du, M., et al. (2013). Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14, 319. doi:10.1186/1471-2164-14-319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, N., Mironov, G., & Berezovski, M. V. (2016). Direct detection of endogenous microRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-015-9277-y.

  18. Silva, A., Bullock, M., & Calin, G. (2015). The clinical relevance of long non-coding RNAs in cancer. Cancers (Basel), 7(4), 2169–2182. doi:10.3390/cancers7040884.

    Article  Google Scholar 

  19. Mandel, P., & Metais, P. (1948). Not Available. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 142(3–4), 241–243.

    CAS  PubMed  Google Scholar 

  20. Heitzer, E., Ulz, P., & Geigl, J. B. (2015). Circulating tumor DNA as a liquid biopsy for cancer. Clinical Chemistry, 61(1), 112–123. doi:10.1373/clinchem.2014.222679.

    Article  CAS  PubMed  Google Scholar 

  21. Ulz, P., Auer, M., & Heitzer, E. (2016). Detection of circulating tumor DNA in the blood of cancer patients: an important tool in cancer chemoprevention. Methods in Molecular Biology, 1379, 45–68. doi:10.1007/978-1-4939-3191-0_5.

    Article  CAS  PubMed  Google Scholar 

  22. Warton, K., & Samimi, G. (2015). Methylation of cell-free circulating DNA in the diagnosis of cancer. Frontiers in Molecular Biosciences, 2, 13. doi:10.3389/fmolb.2015.00013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Beljanski, M., & Plawecki, M. (1979). Particular RNA fragments as promoters of leukocyte and platelet formation in rabbits. Experimental Cell Biology, 47(3), 218–225.

    CAS  PubMed  Google Scholar 

  24. Korosteleva, T. A., & Chistiakova, Z. M. (1979). Immunological study of rat liver RNA in the early stages of hepatic carcinogenesis. Voprosy Onkologii, 25(8), 77–81.

    CAS  PubMed  Google Scholar 

  25. Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141(5), 672–675. doi:10.1111/j.1365-2141.2008.07077.x.

    Article  PubMed  Google Scholar 

  26. Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., et al. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clinical Chemistry, 54(3), 482–490. doi:10.1373/clinchem.2007.097972.

    Article  CAS  PubMed  Google Scholar 

  27. Spindler, K. L., Pallisgaard, N., Andersen, R. F., Brandslund, I., & Jakobsen, A. (2015). Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PloS One, 10(4), e0108247. doi:10.1371/journal.pone.0108247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bryzgunova, O. E., & Laktionov, P. P. (2015). Generation of blood circulating DNA: the sources, peculiarities of circulation and structure. Biomeditsinskaya Khimiya, 61(4), 409–426. doi:10.18097/PBMC20156104409.

    Article  CAS  Google Scholar 

  29. Vasilyeva, L. N., Podgornaya, O. I., & Bespalov, V. G. (2015). Nucleosome fracton of extracellular dna as the index of apoptosis. Tsitologiia, 57(2), 87–94.

    CAS  PubMed  Google Scholar 

  30. Wissler, J. H., Wissler, J. E., & Logemann, E. (2008). Extracellular functional noncoding nucleic acid bioaptamers and angiotropin RNP ribokines in vascularization and self-tolerance. Annals of the New York Academy of Sciences, 1137, 316–342. doi:10.1196/annals.1448.047.

    Article  CAS  PubMed  Google Scholar 

  31. Molnar, B., Toth, K., Bartak, B. K., & Tulassay, Z. (2015). Plasma methylated septin 9: a colorectal cancer screening marker. Expert Review of Molecular Diagnostics, 15(2), 171–184. doi:10.1586/14737159.2015.975212.

    Article  CAS  PubMed  Google Scholar 

  32. Patai, A. V., Valcz, G., Hollosi, P., Kalmar, A., Peterfia, B., Patai, A., et al. (2015). Comprehensive DNA methylation analysis reveals a common ten-gene methylation signature in colorectal adenomas and carcinomas. PloS One, 10(8), e0133836. doi:10.1371/journal.pone.0133836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hao, T. B., Shi, W., Shen, X. J., Qi, J., Wu, X. H., Wu, Y., et al. (2014). Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. British Journal of Cancer, 111(8), 1482–1489. doi:10.1038/bjc.2014.470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tie, J., Kinde, I., Wang, Y., Wong, H. L., Roebert, J., Christie, M., et al. (2015). Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Annals of Oncology, 26(8), 1715–1722. doi:10.1093/annonc/mdv177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269. doi:10.1007/s10555-014-9498-0.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lanman, R. B., Mortimer, S. A., Zill, O. A., Sebisanovic, D., Lopez, R., Blau, S., et al. (2015). Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PloS One, 10(10), e0140712. doi:10.1371/journal.pone.0140712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jovelet, C., Ileana, E., Le Deley, M. C., Motte, N., Rosellini, S., Romero, A., et al. (2016). Circulating cell-free tumor DNA (cfDNA) analysis of 50-genes by next-generation sequencing (NGS) in the prospective MOSCATO trial. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-15-2470.

  38. Kalia, M. (2015). Biomarkers for personalized oncology: recent advances and future challenges. Metabolism, 64(3 Suppl 1), S16–S21. doi:10.1016/j.metabol.2014.10.027.

    Article  CAS  PubMed  Google Scholar 

  39. Patel, K. M., & Tsui, D. W. (2015). The translational potential of circulating tumour DNA in oncology. Clinical Biochemistry, 48(15), 957–961. doi:10.1016/j.clinbiochem.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  40. Kensler, T. W., Spira, A., Garber, J. E., Szabo, E., Lee, J. J., Dong, Z., et al. (2016). Transforming cancer prevention through precision medicine and immune-oncology. Cancer Prevention Research (Philadelphia, Pa.), 9(1), 2–10. doi:10.1158/1940-6207.CAPR-15-0406.

    Article  CAS  Google Scholar 

  41. Russo, M., Siravegna, G., Blaszkowsky, L. S., Corti, G., Crisafulli, G., Ahronian, L. G., et al. (2016). Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discovery, 6(2), 147–153. doi:10.1158/2159-8290.CD-15-1283.

    Article  CAS  PubMed  Google Scholar 

  42. Santiago-Walker, A., Gagnon, R., Mazumdar, J., Casey, M., Long, G. V., Schadendorf, D., et al. (2016). Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clinical Cancer Research, 22(3), 567–574. doi:10.1158/1078-0432.CCR-15-0321.

    Article  CAS  PubMed  Google Scholar 

  43. Zill, O. A., Greene, C., Sebisanovic, D., Siew, L. M., Leng, J., Vu, M., et al. (2015). Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discovery, 5(10), 1040–1048. doi:10.1158/2159-8290.CD-15-0274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bratman, S. V., Newman, A. M., Alizadeh, A. A., & Diehn, M. (2015). Potential clinical utility of ultrasensitive circulating tumor DNA detection with CAPP-Seq. Expert Review of Molecular Diagnostics, 15(6), 715–719. doi:10.1586/14737159.2015.1019476.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reinert, T., Scholer, L. V., Thomsen, R., Tobiasen, H., Vang, S., Nordentoft, I., et al. (2015). Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. doi:10.1136/gutjnl-2014-308859.

  46. Thress, K. S., Brant, R., Carr, T. H., Dearden, S., Jenkins, S., Brown, H., et al. (2015). EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer, 90(3), 509–515. doi:10.1016/j.lungcan.2015.10.004.

    Article  PubMed  Google Scholar 

  47. Richardson, A. L., & Iglehart, J. D. (2012). BEAMing up personalized medicine: mutation detection in blood. Clinical Cancer Research, 18(12), 3209–3211. doi:10.1158/1078-0432.CCR-12-0871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castellanos-Rizaldos, E., Paweletz, C., Song, C., Oxnard, G. R., Mamon, H., Janne, P. A., et al. (2015). Enhanced ratio of signals enables digital mutation scanning for rare allele detection. The Journal of Molecular Diagnostics, 17(3), 284–292. doi:10.1016/j.jmoldx.2014.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tost, J. (2016). The clinical potential of Enhanced-ice-COLD-PCR. Expert Review of Molecular Diagnostics, 16(3), 265–268. doi:10.1586/14737159.2016.1123623.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, H., Zhu, Z. Z., Lu, Y., Liu, F., Zhang, W., Huang, G., et al. (2012). A modified extraction method of circulating free DNA for epidermal growth factor receptor mutation analysis. Yonsei Medical Journal, 53(1), 132–137. doi:10.3349/ymj.2012.53.1.132.

    Article  CAS  PubMed  Google Scholar 

  51. Bell, D. A., & Morrison, B. (1991). The spontaneous apoptotic cell death of normal human lymphocytes in vitro: the release of, and immunoproliferative response to, nucleosomes in vitro. Clinical Immunology and Immunopathology, 60(1), 13–26.

    Article  CAS  PubMed  Google Scholar 

  52. Vasil'eva, I. N., & Zinkin, V. N. (2013). The value of low-molecular-weight DNA of blood plasma in the diagnostic of the patological processes of different genesis. Biomeditsinskaya Khimiya, 59(3), 358–373.

    Article  Google Scholar 

  53. Wyllie, A. H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284(5756), 555–556.

    Article  CAS  PubMed  Google Scholar 

  54. Chandrananda, D., Thorne, N. P., & Bahlo, M. (2015). High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA. BMC Medical Genomics, 8, 29. doi:10.1186/s12920-015-0107-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Cai, X., Janku, F., Zhan, Q., & Fan, J. B. (2015). Accessing genetic information with liquid biopsies. Trends in Genetics, 31(10), 564–575. doi:10.1016/j.tig.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  56. Sequist, L. V., Soria, J. C., Goldman, J. W., Wakelee, H. A., Gadgeel, S. M., Varga, A., et al. (2015). Rociletinib in EGFR-mutated non-small-cell lung cancer. The New England Journal of Medicine, 372(18), 1700–1709. doi:10.1056/NEJMoa1413654.

    Article  PubMed  Google Scholar 

  57. Schiavon, G., Hrebien, S., Garcia-Murillas, I., Cutts, R. J., Pearson, A., Tarazona, N., et al. (2015). Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Science Translational Medicine, 7(313), 313ra182. doi:10.1126/scitranslmed.aac7551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Schwarzenbach, H., Nishida, N., Calin, G. A., & Pantel, K. (2014). Clinical relevance of circulating cell-free microRNAs in cancer. Nature Reviews. Clinical Oncology, 11(3), 145–156. doi:10.1038/nrclinonc.2014.5.

    Article  CAS  PubMed  Google Scholar 

  59. Sun, Y., Liu, Y., Cogdell, D., Calin, G. A., Sun, B., Kopetz, S., et al. (2016). Examining plasma microRNA markers for colorectal cancer at different stages. Oncotarget. doi:10.18632/oncotarget.7196.

  60. Igaz, I., & Igaz, P. (2015). Diagnostic relevance of microRNAs in other body fluids including urine, feces, and saliva. EXS, 106, 245–252. doi:10.1007/978-3-0348-0955-9_11.

    CAS  PubMed  Google Scholar 

  61. Qin, J., Williams, T. L., & Fernando, M. R. (2013). A novel blood collection device stabilizes cell-free RNA in blood during sample shipping and storage. BMC Research Notes, 6, 380. doi:10.1186/1756-0500-6-380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zuo, Z., Maiti, S., Hu, S., Loghavi, S., Calin, G. A., Garcia-Manero, G., et al. (2015). Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Modern Pathology, 28(3), 373–382. doi:10.1038/modpathol.2014.108.

    Article  PubMed  CAS  Google Scholar 

  63. Alder, H., Taccioli, C., Chen, H., Jiang, Y., Smalley, K. J., Fadda, P., et al. (2012). Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis, 33(9), 1736–1744. doi:10.1093/carcin/bgs204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vickovic, S., Ahmadian, A., Lewensohn, R., & Lundeberg, J. (2015). Toward rare blood cell preservation for RNA sequencing. The Journal of Molecular Diagnostics, 17(4), 352–359. doi:10.1016/j.jmoldx.2015.03.009.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, H. S., & Xiao, H. S. (2014). MicroRNAs as potential biomarkers for gastric cancer. World Journal of Gastroenterology, 20(34), 12007–12017. doi:10.3748/wjg.v20.i34.12007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mego, M., Cholujova, D., Minarik, G., Sedlackova, T., Gronesova, P., Karaba, M., et al. (2016). CXCR4-SDF-1 interaction potentially mediates trafficking of circulating tumor cells in primary breast cancer. BMC Cancer, 16(1), 127. doi:10.1186/s12885-016-2143-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wozniak, M. B., Scelo, G., Muller, D. C., Mukeria, A., Zaridze, D., & Brennan, P. (2015). Circulating MicroRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PloS One, 10(5), e0125026. doi:10.1371/journal.pone.0125026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., et al. (2015). Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature, 525(7568), 251–255. doi:10.1038/nature14966.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, J., Zhang, K., Bi, M., Jiao, X., Zhang, D., & Dong, Q. (2014). Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anti-Cancer Drugs, 25(3), 346–352. doi:10.1097/CAD.0000000000000049.

    Article  CAS  PubMed  Google Scholar 

  70. Pucciarelli, S., Rampazzo, E., Briarava, M., Maretto, I., Agostini, M., Digito, M., et al. (2012). Telomere-specific reverse transcriptase (hTERT) and cell-free RNA in plasma as predictors of pathologic tumor response in rectal cancer patients receiving neoadjuvant chemoradiotherapy. Annals of Surgical Oncology, 19(9), 3089–3096. doi:10.1245/s10434-012-2272-z.

    Article  PubMed  Google Scholar 

  71. Verma, A. M., Patel, M., Aslam, M. I., Jameson, J., Pringle, J. H., Wurm, P., et al. (2015). Circulating plasma microRNAs as a screening method for detection of colorectal adenomas. Lancet, 385(Suppl 1), S100. doi:10.1016/S0140-6736(15)60415-9.

    Article  PubMed  Google Scholar 

  72. Kishikawa, T., Otsuka, M., Ohno, M., Yoshikawa, T., Takata, A., & Koike, K. (2015). Circulating RNAs as new biomarkers for detecting pancreatic cancer. World Journal of Gastroenterology, 21(28), 8527–8540. doi:10.3748/wjg.v21.i28.8527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lindner, K., Haier, J., Wang, Z., Watson, D. I., Hussey, D. J., & Hummel, R. (2015). Circulating microRNAs: emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clinical Science (London, England), 128(1), 1–15. doi:10.1042/CS20140089.

    Article  CAS  Google Scholar 

  74. Alsidawi, S., Malek, E., & Driscoll, J. J. (2014). MicroRNAs in brain metastases: potential role as diagnostics and therapeutics. International Journal of Molecular Sciences, 15(6), 10508–10526. doi:10.3390/ijms150610508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wulfken, L. M., Moritz, R., Ohlmann, C., Holdenrieder, S., Jung, V., Becker, F., et al. (2011). MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PloS One, 6(9), e25787. doi:10.1371/journal.pone.0025787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pigati, L., Yaddanapudi, S. C., Iyengar, R., Kim, D. J., Hearn, S. A., Danforth, D., et al. (2010). Selective release of microRNA species from normal and malignant mammary epithelial cells. PloS One, 5(10), e13515. doi:10.1371/journal.pone.0013515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chakraborty, C., & Das, S. (2016). Profiling cell-free and circulating miRNA: a clinical diagnostic tool for different cancers. Tumour Biology. doi:10.1007/s13277-016-4907-3.

  78. Lopez-Vilchez, I., Diaz-Ricart, M., Galan, A. M., Roque, M., Caballo, C., Molina, P., et al. (2016). Internalization of tissue factor-rich microvesicles by platelets occurs independently of GPIIb-IIIa, and involves CD36 receptor, serotonin transporter and cytoskeletal assembly. Journal of Cellular Biochemistry, 117(2), 448–457. doi:10.1002/jcb.25293.

    Article  CAS  PubMed  Google Scholar 

  79. Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366(7), 610–618. doi:10.1056/NEJMoa1110352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thon, J. N., & Italiano, J. E. (2010). Platelet formation. Seminars in Hematology, 47(3), 220–226. doi:10.1053/j.seminhematol.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Agam, G., Bessler, H., & Djaldetti, M. (1976). In vitro DNA and RNA synthesis by human platelets. Biochimica et Biophysica Acta, 425(1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  82. Macaulay, I. C., Carr, P., Gusnanto, A., Ouwehand, W. H., Fitzgerald, D., & Watkins, N. A. (2005). Platelet genomics and proteomics in human health and disease. The Journal of Clinical Investigation, 115(12), 3370–3377. doi:10.1172/jci26885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Italiano Jr., J. E., & Shivdasani, R. A. (2003). Megakaryocytes and beyond: the birth of platelets. Journal of Thrombosis and Haemostasis, 1(6), 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  84. Gnatenko, D. V., Dunn, J. J., Schwedes, J., & Bahou, W. F. (2009). Transcript profiling of human platelets using microarray and serial analysis of gene expression (SAGE). Methods in Molecular Biology, 496, 245–272. doi:10.1007/978-1-59745-553-4_16.

    Article  CAS  PubMed  Google Scholar 

  85. Denis, M. M., Tolley, N. D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., et al. (2005). Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell, 122(3), 379–391. doi:10.1016/j.cell.2005.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kieffer, N., Guichard, J., Farcet, J. P., Vainchenker, W., & Breton-Gorius, J. (1987). Biosynthesis of major platelet proteins in human blood platelets. European Journal of Biochemistry, 164(1), 189–195.

    Article  CAS  PubMed  Google Scholar 

  87. Arimori, S., & Sumitomo, K. (1978). Ultrastructural observation of openings of open canalicular system on the membrane surface of human platelet by freeze-etching method (author’s transl). Nihon Ketsueki Gakkai Zasshi, 41(3), 569–572.

    CAS  PubMed  Google Scholar 

  88. White, J. G. (1972). Uptake of latex particles by blood platelets: phagocytosis or sequestration? The American Journal of Pathology, 69(3), 439–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Thon, J. N., & Italiano, J. E. (2012). Platelets: production, morphology and ultrastructure. Handbook of Experimental Pharmacology, 210, 3–22. doi:10.1007/978-3-642-29423-5_1.

    Article  CAS  Google Scholar 

  90. van Nispen tot Pannerden, H., de Haas, F., Geerts, W., Posthuma, G., van Dijk, S., & Heijnen, H. F. (2010). The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood, 116(7), 1147–1156. doi:10.1182/blood-2010-02-268680.

    Article  PubMed  CAS  Google Scholar 

  91. Choi, W., Karim, Z. A., & Whiteheart, S. W. (2010). Protein expression in platelets from six species that differ in their open canalicular system. Platelets, 21(3), 167–175. doi:10.3109/09537101003611385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hughes, F. B., & Brodie, B. B. (1959). The mechanism of serotonin and catecholamine uptake by platelets. The Journal of Pharmacology and Experimental Therapeutics, 127, 96–102.

    CAS  PubMed  Google Scholar 

  93. Adnot, S., Houssaini, A., Abid, S., Marcos, E., & Amsellem, V. (2013). Serotonin transporter and serotonin receptors. Handbook of Experimental Pharmacology, 218, 365–380. doi:10.1007/978-3-642-38664-0_15.

    Article  CAS  PubMed  Google Scholar 

  94. Pavanetto, M., Zarpellon, A., Borgo, C., Donella-Deana, A., & Deana, R. (2011). Regulation of serotonin transport in human platelets by tyrosine kinase Syk. Cellular Physiology and Biochemistry, 27(2), 139–148. doi:10.1159/000325216.

    Article  CAS  PubMed  Google Scholar 

  95. Jin, K., Li, T., van Dam, H., Zhou, F., & Zhang, L. (2017). Molecular insights into tumour metastasis: tracing the dominant events. The Journal of Pathology, 241(5), 567–577. doi:10.1002/path.4871.

    Article  CAS  PubMed  Google Scholar 

  96. Mitrugno, A., Tormoen, G. W., Kuhn, P., & McCarty, O. J. (2016). The prothrombotic activity of cancer cells in the circulation. Blood Reviews, 30(1), 11–19. doi:10.1016/j.blre.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  97. Hisada, Y., Geddings, J. E., Boulaftali, Y., Getz, T. M., Whelihan, M., Fuentes, R., et al. (2016). OC-04—tissue factor positive microvesicles activate platelets in vitro and in vivo and enhance thrombosis in mice. Thrombosis Research, 140(Suppl 1), S169–S170. doi:10.1016/S0049-3848(16)30121-9.

    Article  PubMed  Google Scholar 

  98. Geddings, J. E., Hisada, Y., Boulaftali, Y., Getz, T. M., Whelihan, M., Fuentes, R., et al. (2016). Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis, 14(1), 153–166. doi:10.1111/jth.13181.

    Article  CAS  PubMed  Google Scholar 

  99. Tseng, J. C., Chang, L. C., Jiang, B. Y., Liu, Y. C., Chen, H. J., Yu, C. T., et al. (2014). Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer. Journal of Cancer Research and Clinical Oncology, 140(1), 61–67. doi:10.1007/s00432-013-1544-8.

    Article  CAS  PubMed  Google Scholar 

  100. Heijnen, H., & van der Sluijs, P. (2015). Platelet secretory behaviour: as diverse as the granules ... or not? Journal of Thrombosis and Haemostasis, 13(12), 2141–2151. doi:10.1111/jth.13147.

    Article  CAS  PubMed  Google Scholar 

  101. Chen, C. H., Lo, R. W., Urban, D., Pluthero, F. G., & Kahr, W. H. (2017). Alpha-granule biogenesis: from disease to discovery. Platelets, 28(2), 147–154. doi:10.1080/09537104.2017.1280599.

    Article  CAS  PubMed  Google Scholar 

  102. White, J. G. (1972). Exocytosis of secretory organelles from blood platelets incubated with cationic polypeptides. The American Journal of Pathology, 69(1), 41–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. White, J. G., & Estensen, R. D. (1972). Degranulation of discoid platelets. The American Journal of Pathology, 68(2), 289–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Harrison, P., & Cramer, E. M. (1993). Platelet alpha-granules. Blood Reviews, 7(1), 52–62.

    Article  CAS  PubMed  Google Scholar 

  105. Yadav, S., & Storrie, B. (2017). The cellular basis of platelet secretion: emerging structure/function relationships. Platelets, 28(2), 108–118. doi:10.1080/09537104.2016.1257786.

    Article  CAS  PubMed  Google Scholar 

  106. Sander, H. J., Slot, J. W., Bouma, B. N., Bolhuis, P. A., Pepper, D. S., & Sixma, J. J. (1983). Immunocytochemical localization of fibrinogen, platelet factor 4, and beta thromboglobulin in thin frozen sections of human blood platelets. The Journal of Clinical Investigation, 72(4), 1277–1287. doi:10.1172/jci111084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wencel-Drake, J. D., Painter, R. G., Zimmerman, T. S., & Ginsberg, M. H. (1985). Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin, and von Willebrand factor in frozen thin section. Blood, 65(4), 929–938.

    CAS  PubMed  Google Scholar 

  108. White, J. G. (1968). The dense bodies of human platelets. Origin of serotonin storage particles from platelet granules. The American Journal of Pathology, 53(5), 791–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Flaumenhaft, R. (2006). Formation and fate of platelet microparticles. Blood Cells, Molecules & Diseases, 36(2), 182–187. doi:10.1016/j.bcmd.2005.12.019.

    Article  CAS  Google Scholar 

  110. Horstman, L. L., & Ahn, Y. S. (1999). Platelet microparticles: a wide-angle perspective. Critical Reviews in Oncology/Hematology, 30(2), 111–142.

    Article  CAS  PubMed  Google Scholar 

  111. Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13(3), 269–288.

    Article  CAS  PubMed  Google Scholar 

  112. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–3799.

    CAS  PubMed  Google Scholar 

  113. Zmigrodzka, M., Guzera, M., Miskiewicz, A., Jagielski, D., & Winnicka, A. (2016). The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biology, 37(11), 14391–14401. doi:10.1007/s13277-016-5358-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760. doi:10.1002/ijc.20657.

    Article  CAS  PubMed  Google Scholar 

  115. Hugel, B., Martinez, M. C., Kunzelmann, C., & Freyssinet, J. M. (2005). Membrane microparticles: two sides of the coin. Physiology (Bethesda), 20, 22–27. doi:10.1152/physiol.00029.2004.

    Article  CAS  Google Scholar 

  116. Bobrie, A., Colombo, M., Raposo, G., & Thery, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic, 12(12), 1659–1668. doi:10.1111/j.1600-0854.2011.01225.x.

    Article  CAS  PubMed  Google Scholar 

  117. Varon, D., & Shai, E. (2009). Role of platelet-derived microparticles in angiogenesis and tumor progression. Discovery Medicine, 8(43), 237–241.

    PubMed  Google Scholar 

  118. Dovizio, M., Alberti, S., Guillem-Llobat, P., & Patrignani, P. (2014). Role of platelets in inflammation and cancer: novel therapeutic strategies. Basic & Clinical Pharmacology & Toxicology, 114(1), 118–127. doi:10.1111/bcpt.12156.

    Article  CAS  Google Scholar 

  119. Mause, S. F., & Weber, C. (2010). Microparticles: protagonists of a novel communication network for intercellular information exchange. Circulation Research, 107(9), 1047–1057. doi:10.1161/circresaha.110.226456.

    Article  CAS  PubMed  Google Scholar 

  120. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. doi:10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  121. Weidle, U. H., Birzele, F., Kollmorgen, G., & Ruger, R. (2017). The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics, 14(1), 1–15. doi:10.21873/cgp.20015.

    Article  CAS  PubMed  Google Scholar 

  122. Chaput, N., & Thery, C. (2011). Exosomes: immune properties and potential clinical implementations. Seminars in Immunopathology, 33(5), 419–440. doi:10.1007/s00281-010-0233-9.

    Article  CAS  PubMed  Google Scholar 

  123. Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. doi:10.1038/nri855.

    CAS  PubMed  Google Scholar 

  124. Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., et al. (2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. Journal of Immunology, 166(12), 7309–7318.

    Article  CAS  Google Scholar 

  125. Honn, K. V., Tang, D. G., & Chen, Y. Q. (1992). Platelets and cancer metastasis: more than an epiphenomenon. Seminars in Thrombosis and Hemostasis, 18(4), 392–415. doi:10.1055/s-2007-1002578.

    Article  CAS  PubMed  Google Scholar 

  126. Zucker, S., Pei, D., Cao, J., & Lopez-Otin, C. (2003). Membrane type-matrix metalloproteinases (MT-MMP). Current Topics in Developmental Biology, 54, 1–74.

    Article  CAS  PubMed  Google Scholar 

  127. Jansen, F., Yang, X., Hoyer, F. F., Paul, K., Heiermann, N., Becher, M. U., et al. (2012). Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 1925–1935. doi:10.1161/atvbaha.112.253229.

    Article  CAS  PubMed  Google Scholar 

  128. Ciravolo, V., Huber, V., Ghedini, G. C., Venturelli, E., Bianchi, F., Campiglio, M., et al. (2012). Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. Journal of Cellular Physiology, 227(2), 658–667. doi:10.1002/jcp.22773.

    Article  CAS  PubMed  Google Scholar 

  129. Helley, D., Banu, E., Bouziane, A., Banu, A., Scotte, F., Fischer, A. M., et al. (2009). Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. European Urology, 56(3), 479–484. doi:10.1016/j.eururo.2008.06.038.

    Article  CAS  PubMed  Google Scholar 

  130. Kim, H. K., Song, K. S., Park, Y. S., Kang, Y. H., Lee, Y. J., Lee, K. R., et al. (2003). Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. European Journal of Cancer, 39(2), 184–191.

    Article  CAS  PubMed  Google Scholar 

  131. Italiano Jr., J. E., Mairuhu, A. T., & Flaumenhaft, R. (2010). Clinical relevance of microparticles from platelets and megakaryocytes. Current Opinion in Hematology, 17(6), 578–584. doi:10.1097/MOH.0b013e32833e77ee.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kral, J. B., Schrottmaier, W. C., Salzmann, M., & Assinger, A. (2016). Platelet interaction with innate immune cells. Transfusion Medicine and Hemotherapy, 43(2), 78–88. doi:10.1159/000444807.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Manne, B. K., Xiang, S. C., & Rondina, M. T. (2017). Platelet secretion in inflammatory and infectious diseases. Platelets, 28(2), 155–164. doi:10.1080/09537104.2016.1240766.

    Article  CAS  PubMed  Google Scholar 

  134. Thomas, M. R., & Storey, R. F. (2015). The role of platelets in inflammation. Thrombosis and Haemostasis, 114(3), 449–458. doi:10.1160/TH14-12-1067.

    Article  PubMed  Google Scholar 

  135. Laurance, S., Bertin, F. R., Ebrahimian, T., Kassim, Y., Rys, R. N., Lehoux, S., et al. (2017). Gas6 (growth arrest-specific 6) promotes inflammatory (CCR2hiCX3CR1lo) monocyte recruitment in venous thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. doi:10.1161/ATVBAHA.116.308925.

  136. Frydman, G. H., Le, A., Ellett, F., Jorgensen, J., Fox, J. G., Tompkins, R. G., et al. (2017). Technical advance: changes in neutrophil migration patterns upon contact with platelets in a microfluidic assay. Journal of Leukocyte Biology, 101(3), 797–806. doi:10.1189/jlb.1TA1115-517RR.

    Article  CAS  PubMed  Google Scholar 

  137. Zuchtriegel, G., Uhl, B., Puhr-Westerheide, D., Pornbacher, M., Lauber, K., Krombach, F., et al. (2016). Platelets guide leukocytes to their sites of extravasation. PLoS Biology, 14(5), e1002459. doi:10.1371/journal.pbio.1002459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Yan, M., & Jurasz, P. (2016). The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochimica et Biophysica Acta, 1863(3), 392–400. doi:10.1016/j.bbamcr.2015.07.008.

    Article  CAS  PubMed  Google Scholar 

  139. Kim, J., & Bae, J. S. (2016). Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators of Inflammation, 2016, 6058147. doi:10.1155/2016/6058147.

    PubMed  PubMed Central  Google Scholar 

  140. Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovascular Research, 107(3), 386–395. doi:10.1093/cvr/cvv048.

    Article  CAS  PubMed  Google Scholar 

  141. Dohlman, T. H., Di Zazzo, A., Omoto, M., Hua, J., Ding, J., Hamrah, P., et al. (2016). E-selectin mediates immune cell trafficking in corneal transplantation. Transplantation, 100(4), 772–780. doi:10.1097/TP.0000000000001107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dinkla, S., van Cranenbroek, B., van der Heijden, W. A., He, X., Wallbrecher, R., Dumitriu, I. E., et al. (2016). Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood, 127(16), 1976–1986. doi:10.1182/blood-2015-04-640300.

    Article  CAS  PubMed  Google Scholar 

  143. Scotland, R. S., Cohen, M., Foster, P., Lovell, M., Mathur, A., Ahluwalia, A., et al. (2005). C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proceedings of the National Academy of Sciences of the United States of America, 102(40), 14452–14457. doi:10.1073/pnas.0504961102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Diacovo, T. G., Roth, S. J., Morita, C. T., Rosat, J. P., Brenner, M. B., & Springer, T. A. (1996). Interactions of human alpha/beta and gamma/delta T lymphocyte subsets in shear flow with E-selectin and P-selectin. The Journal of Experimental Medicine, 183(3), 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  145. Hu, M., Zhang, H., Liu, Q., & Hao, Q. (2016). Structural basis for human PECAM-1-mediated trans-homophilic cell adhesion. Scientific Reports, 6, 38655. doi:10.1038/srep38655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vachino, G., Chang, X. J., Veldman, G. M., Kumar, R., Sako, D., Fouser, L. A., et al. (1995). P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T cells and is widely distributed in non-functional form on many lymphocytic cells. The Journal of Biological Chemistry, 270(37), 21966–21974.

    Article  CAS  PubMed  Google Scholar 

  147. Duchez, A. C., Boudreau, L. H., Naika, G. S., Bollinger, J., Belleannee, C., Cloutier, N., et al. (2015). Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proceedings of the National Academy of Sciences of the United States of America, 112(27), E3564–E3573. doi:10.1073/pnas.1507905112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134. doi:10.1038/nrc3004.

    Article  CAS  PubMed  Google Scholar 

  149. Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2005). Platelets and fibrin (ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185. doi:10.1182/blood-2004-06-2272.

    Article  CAS  PubMed  Google Scholar 

  150. Calverley, D. C., Phang, T. L., Choudhury, Q. G., Gao, B., Oton, A. B., Weyant, M. J., et al. (2010). Significant downregulation of platelet gene expression in metastatic lung cancer. Clinical and Translational Science, 3(5), 227–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nilsson, R. J., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., et al. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118(13), 3680–3683. doi:10.1182/blood-2011-03-344408.

    Article  PubMed  Google Scholar 

  152. Joosse, S. A., & Pantel, K. (2015). Tumor-educated platelets as liquid biopsy in cancer patients. Cancer Cell, 28(5), 552–554. doi:10.1016/j.ccell.2015.10.007.

    Article  CAS  PubMed  Google Scholar 

  153. Best, M. G., Sol, N., Kooi, I., Tannous, J., Westerman, B. A., Rustenburg, F., et al. (2015). RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 28(5), 666–676. doi:10.1016/j.ccell.2015.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhu, J., & Strickler, J. H. (2016). Clinical applications of liquid biopsies in gastrointestinal oncology. J Gastrointest Oncol, 7(5), 675–686. doi:10.21037/jgo.2016.08.08.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Feller, S. M., & Lewitzky, M. (2016). Hunting for the ultimate liquid cancer biopsy—let the TEP dance begin. Cell Communication and Signaling: CCS, 14(1), 24. doi:10.1186/s12964-016-0147-9.

    Article  PubMed Central  Google Scholar 

  156. Holmes, C. E., Levis, J. E., Schneider, D. J., Bambace, N. M., Sharma, D., Lal, I., et al. (2016). Platelet phenotype changes associated with breast cancer and its treatment. Platelets, 27(7), 703–711. doi:10.3109/09537104.2016.1171302.

    Article  CAS  PubMed  Google Scholar 

  157. Dixon, D. A., Tolley, N. D., Bemis-Standoli, K., Martinez, M. L., Weyrich, A. S., Morrow, J. D., et al. (2006). Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. The Journal of Clinical Investigation, 116(10), 2727–2738. doi:10.1172/jci27209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Evangelista, V., Manarini, S., Di Santo, A., Capone, M. L., Ricciotti, E., Di Francesco, L., et al. (2006). De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circulation Research, 98(5), 593–595. doi:10.1161/01.RES.0000214553.37930.3e.

    Article  CAS  PubMed  Google Scholar 

  159. Guillem-Llobat, P., Dovizio, M., Alberti, S., Bruno, A., & Patrignani, P. (2014). Platelets, cyclooxygenases, and colon cancer. Seminars in Oncology, 41(3), 385–396. doi:10.1053/j.seminoncol.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  160. Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., et al. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–c189. doi:10.1152/ajpcell.00196.2016.

    Article  PubMed  Google Scholar 

  161. Radziwon-Balicka, A., Santos-Martinez, M. J., Corbalan, J. J., O'Sullivan, S., Treumann, A., Gilmer, J. F., et al. (2014). Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis, 35(2), 324–332. doi:10.1093/carcin/bgt332.

    Article  CAS  PubMed  Google Scholar 

  162. Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590. doi:10.1016/j.ccr.2011.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cooke, N. M., Spillane, C. D., Sheils, O., O'Leary, J., & Kenny, D. (2015). Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer, 15, 627. doi:10.1186/s12885-015-1634-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Mammadova-Bach, E., Zigrino, P., Brucker, C., Bourdon, C., Freund, M., De Arcangelis, A., et al. (2016). Platelet integrin alpha6beta1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight, 1(14), e88245. doi:10.1172/jci.insight.88245.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.

    CAS  PubMed  Google Scholar 

  166. Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.

    CAS  Google Scholar 

  167. Gasic, G. J., & Gasic, T. B. (1982). Plasma membrane vesicles as mediators of interactions between tumor cells and components of the hemostatic and immune systems. Progress in Clinical and Biological Research, 89, 429–444.

    CAS  PubMed  Google Scholar 

  168. Gasic, G. J., Tuszynski, G. P., & Gorelik, E. (1986). Interaction of the hemostatic and immune systems in the metastatic spread of tumor cells. International Review of Experimental Pathology, 29, 173–212.

    Article  CAS  PubMed  Google Scholar 

  169. Ruppert, M., Aigner, S., Hubbe, M., Yagita, H., & Altevogt, P. (1995). The L1 adhesion molecule is a cellular ligand for VLA-5. The Journal of Cell Biology, 131(6 Pt 2), 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  170. Tsuruo, T., & Fujita, N. (2008). Platelet aggregation in the formation of tumor metastasis. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 84(6), 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Menter, D. G., Steinert, B. W., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). A new in vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Research, 47(9), 2425–2432.

    CAS  PubMed  Google Scholar 

  172. Menter, D. G., Onoda, J. M., Moilanen, D., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. Journal of the National Cancer Institute, 78(5), 961–969.

    CAS  PubMed  Google Scholar 

  173. Xu, L., Mao, X., Imrali, A., Syed, F., Mutsvangwa, K., Berney, D., et al. (2015). Optimization and evaluation of a novel size based circulating tumor cell isolation system. PloS One, 10(9), e0138032. doi:10.1371/journal.pone.0138032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Sorensen, H. T., Mellemkjaer, L., Steffensen, F. H., Olsen, J. H., & Nielsen, G. L. (1998). The risk of a diagnosis of cancer after primary deep venous thrombosis or pulmonary embolism. The New England Journal of Medicine, 338(17), 1169–1173. doi:10.1056/nejm199804233381701.

    Article  CAS  PubMed  Google Scholar 

  175. Levitan, N., Dowlati, A., Remick, S. C., Tahsildar, H. I., Sivinski, L. D., Beyth, R., et al. (1999). Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore), 78(5), 285–291.

    Article  CAS  Google Scholar 

  176. Alexandrakis, M. G., Passam, F. H., Moschandrea, I. A., Christophoridou, A. V., Pappa, C. A., Coulocheri, S. A., et al. (2003). Levels of serum cytokines and acute phase proteins in patients with essential and cancer-related thrombocytosis. American Journal of Clinical Oncology, 26(2), 135–140. doi:10.1097/01.coc.0000017093.79897.de.

    Article  CAS  PubMed  Google Scholar 

  177. Seretis, C., Youssef, H., & Chapman, M. (2015). Hypercoagulation in colorectal cancer: what can platelet indices tell us? Platelets, 26(2), 114–118. doi:10.3109/09537104.2014.894969.

    Article  CAS  PubMed  Google Scholar 

  178. Karagöz, B., Sücüllü, İ., Sayan, Ö., Bilgi, O., Tuncel, T., Filiz, A. İ., et al. (2010). Platelet indices in patients with colorectal cancer. [journal article]. Central European Journal of Medicine, 5(3), 365–368. doi:10.2478/s11536-009-0077-7.

    Google Scholar 

  179. Watt, D. G., Proctor, M. J., Park, J. H., Horgan, P. G., & McMillan, D. C. (2015). The neutrophil-platelet score (NPS) predicts survival in primary operable colorectal cancer and a variety of common cancers. PloS One, 10(11), e0142159. doi:10.1371/journal.pone.0142159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wan, S., Lai, Y., Myers, R. E., Li, B., Hyslop, T., London, J., et al. (2013). Preoperative platelet count associates with survival and distant metastasis in surgically resected colorectal cancer patients. Journal of Gastrointestinal Cancer, 44(3), 293–304. doi:10.1007/s12029-013-9491-9.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhao, J. M., Wang, Y. H., Yao, N., Wei, K. K., Jiang, L., Hanif, S., et al. (2016). Poor prognosis significance of pretreatment thrombocytosis in patients with colorectal cancer: a meta-analysis. Asian Pacific Journal of Cancer Prevention, 17(9), 4295–4300.

    PubMed  Google Scholar 

  182. Wodarczyk, M., Kasprzyk, J., Sobolewska-Wodarczyk, A., Wodarczyk, J., Tchorzewski, M., Dziki, A., et al. (2016). Mean platelet volume as a possible biomarker of tumor progression in rectal cancer. Cancer Biomarkers, 17(4), 411–417. doi:10.3233/cbm-160657.

    Article  PubMed  Google Scholar 

  183. Dymicka-Piekarska, V., Matowicka-Karna, J., Osada, J., Kemona, H., & Butkiewicz, A. M. (2006). Changes in platelet CD 62P expression and soluble P-selectin concentration in surgically treated colorectal carcinoma. Advances in Medical Sciences, 51, 304–308.

    CAS  PubMed  Google Scholar 

  184. Dymicka-Piekarska, V., Kemona, H., Piotrowski, Z., Gryko, M., Milewski, Z., & Matowicka-Karna, J. (2003). Does colorectal cancer influence platelet activation? Przegla̧d Lekarski, 60(11), 716–718.

    PubMed  Google Scholar 

  185. Del Rio, M., Mollevi, C., Vezzio-Vie, N., Bibeau, F., Ychou, M., & Martineau, P. (2013). Specific extracellular matrix remodeling signature of colon hepatic metastases. PloS One, 8(9), e74599. doi:10.1371/journal.pone.0074599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Zhao, L., Bi, Y., Kou, J., Shi, J., & Piao, D. (2016). Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. Journal of Experimental & Clinical Cancer Research, 35, 54. doi:10.1186/s13046-016-0328-9.

    Article  CAS  Google Scholar 

  187. Mantur, M., Snarska, J., Sidorska, A., Ostrowska, H., Kruszewska-Wnorowska, K., & Wojszel, J. (2008). Changes in PDGF concentration in surgically treated colorectal carcinoma. Advances in Medical Sciences, 53(1), 37–41. doi:10.2478/v10039-008-0030-z.

    Article  CAS  PubMed  Google Scholar 

  188. Ogino, S., Kirkner, G. J., Nosho, K., Irahara, N., Kure, S., Shima, K., et al. (2008). Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clinical Cancer Research, 14(24), 8221–8227. doi:10.1158/1078-0432.ccr-08-1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sharma, D., Brummel-Ziedins, K. E., Bouchard, B. A., & Holmes, C. E. (2014). Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. Journal of Cellular Physiology, 229(8), 1005–1015. doi:10.1002/jcp.24539.

    Article  CAS  PubMed  Google Scholar 

  190. Sostres, C., Gargallo, C. J., & Lanas, A. (2014). Aspirin, cyclooxygenase inhibition and colorectal cancer. World J Gastrointest Pharmacol Ther, 5(1), 40–49. doi:10.4292/wjgpt.v5.i1.40.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Su, B. B., Chen, J. H., Shi, H., Chen, Q. Q., & Wan, J. (2014). Aspirin may modify tumor microenvironment via antiplatelet effect. Medical Hypotheses, 83(2), 148–150. doi:10.1016/j.mehy.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  192. Guillem-Llobat, P., Dovizio, M., Bruno, A., Ricciotti, E., Cufino, V., Sacco, A., et al. (2016). Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 7(22), 32462–32477. doi:10.18632/oncotarget.8655.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Roop, R. P., Naughton, M. J., Van Poznak, C., Schneider, J. G., Lammers, P. E., Pluard, T. J., et al. (2013). A randomized phase II trial investigating the effect of platelet function inhibition on circulating tumor cells in patients with metastatic breast cancer. Clinical Breast Cancer, 13(6), 409–415. doi:10.1016/j.clbc.2013.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390. doi:10.1111/cts.12070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute, 94(4), 252–266.

    Article  CAS  PubMed  Google Scholar 

  196. Alonso-Escolano, D., Strongin, A. Y., Chung, A. W., Deryugina, E. I., & Radomski, M. W. (2004). Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. British Journal of Pharmacology, 141(2), 241–252. doi:10.1038/sj.bjp.0705606.

    Article  CAS  PubMed  Google Scholar 

  197. Frouws, M. A., Rademaker, E., Bastiaannet, E., van Herk-Sukel, M. P., Lemmens, V. E., Van de Velde, C. J., et al. (2017). The difference in association between aspirin use and other thrombocyte aggregation inhibitors and survival in patients with colorectal cancer. European Journal of Cancer, 77, 24–30. doi:10.1016/j.ejca.2017.02.025.

    Article  CAS  PubMed  Google Scholar 

  198. Liang, H., Yang, C., Zhang, B., Wang, H., Liu, H., Zhao, Z., et al. (2015). Hydroxyethyl starch 200/0.5 decreases circulating tumor cells of colorectal cancer patients and reduces metastatic potential of colon cancer cell line through inhibiting platelets activation. Medical Oncology, 32(5), 151. doi:10.1007/s12032-015-0601-3.

    Article  PubMed  CAS  Google Scholar 

  199. Zhang, Y., Wei, J., Liu, S., Wang, J., Han, X., Qin, H., et al. (2017). Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics, 7(5), 1062–1071. doi:10.7150/thno.17908.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ludwig, R. J., Schon, M. P., & Boehncke, W. H. (2007). P-selectin: a common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opinion on Therapeutic Targets, 11(8), 1103–1117. doi:10.1517/14728222.11.8.1103.

    Article  CAS  PubMed  Google Scholar 

  201. Qi, C., Li, B., Guo, S., Wei, B., Shao, C., Li, J., et al. (2015). P-selectin-mediated adhesion between platelets and tumor cells promotes intestinal tumorigenesis in Apc(min/+) mice. International Journal of Biological Sciences, 11(6), 679–687. doi:10.7150/ijbs.11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dymicka-Piekarska, V., Butkiewicz, A., Matowicka-Karna, J., & Kemona, H. (2005). Soluble P-selectin concentration in patients with colorectal cancer. Neoplasma, 52(4), 297–301.

    CAS  PubMed  Google Scholar 

  203. Dymicka-Piekarska, V., Matowicka-Karna, J., Gryko, M., Kemona-Chetnik, I., & Kemona, H. (2007). Relationship between soluble P-selectin and inflammatory factors (interleukin-6 and C-reactive protein) in colorectal cancer. Thrombosis Research, 120(4), 585–590. doi:10.1016/j.thromres.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  204. Li, J., Sharkey, C. C., Wun, B., Liesveld, J. L., & King, M. R. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 228, 38–47. doi:10.1016/j.jconrel.2016.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grant and other support: Boone Pickens Distinguished Chair for Early Prevention of Cancer, Duncan Family Institute, Colorectal Cancer Moon Shot, P30CA016672-41, 1R01CA187238-01, 5R01CA172670-03 and 1R01CA184843-01A1, and CA177909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Kopetz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanikarla-Marie, P., Lam, M., Menter, D.G. et al. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev 36, 235–248 (2017). https://doi.org/10.1007/s10555-017-9681-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9681-1

Keywords

Navigation