[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two cryptomorphic formalizations of projective incidence geometry

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Incidence geometry is a well-established theory which captures the very basic properties of all geometries in terms of points belonging to lines, planes, etc. Moreover, projective incidence geometry leads to a simple framework where many properties can be studied. In this article, we consider two very different but complementary mathematical approaches formalizing this theory within the Coq proof assistant. The first one consists of the usual and synthetic geometric axiom system often encountered in the literature. The second one is more original and relies on combinatorial aspects through the notion of rank which is based on the matroid structure of incidence geometry. This paper mainly contributes to the field by proving the equivalence between these two approaches in both 2D and 3D. This result allows us to study the further automation of many proofs of projective geometry theorems. We give an overview of techniques that will be heavily used in the equivalence proof and are generic enough to be reused later in yet-to-be-written proofs. Finally, we discuss the possibilities of future automation that can be envisaged using the rank notion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baker, H.F.: Principles of geometry, vol. 1. Cambridge University Press, Cambridge (1925)

    Google Scholar 

  2. Bamberg, J., Penttila, T.: Completing Segre’s proof of Wedderburn’s little theorem. Bull. Lond. Math. Soc. 47(3), 483–492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batten, L.M.: Combinatorics of finite geometries. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  4. Bertot, Y., Castéran, P.: Interactive theorem proving and program development, Coq’Art: The calculus of inductive constructions. Texts in theoretical computer science, Springer Science & Business Media (2004)

  5. Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility and readability of formal proofs in geometry. Automated Deduction in Geometry 2014, 1–19 (2014)

    Google Scholar 

  6. Braun, D., Magaud, N., Schreck, P.: An equivalence proof between rank theory and incidence projective geometry. In: Proceedings of automated deduction in geometry 2016. pp. 62–77. https://hal.inria.fr/hal-01334334 (2016)

  7. Buekenhout, F.: Handbook of incidence geometry: buildings and foundations. Elsevier, Amsterdam (1995)

  8. Castéran, P., Sozeau, M.: A Gentle Introduction to Type Classes and Relations in Coq (2016)

  9. Coq development team: The Coq proof Assistant Reference Manual. https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf (2016)

  10. Coxeter, H.S.M.: Projective geometry springer science & business media (2003)

  11. Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in hilbert’s elementary geometry. Automated Deduction in Geometry, 306–324 (2000)

  12. Duprat, J.: Une axiomatique de la géométrie plane en Coq. Journé,es Francophones des Langages Applicatifs (2008)

  13. Fuchs, L., Thery, L.: A formalization of grassmann-cayley algebra in Coq and its application to theorem proving in projective geometry. Automated Deduction in Geometry 6877, 51–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Génevaux, J.-D., Narboux, J, Schreck, P: Formalization of Wu’s simple method in Coq. Certified Programs and Proofs 7086, 71–86 (2011)

    Article  MATH  Google Scholar 

  15. Guilhot, F.: Formalisation en Coq et visualisation d’un cours de géometrie pour le lycée. Journé,es Francophones des Langages Applicatifs 7, 15 (2004)

    Google Scholar 

  16. Janičić, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kahn, G.: Constructive geometry according to Jan von Plato (1995)

  18. Kusak, E.: Desargues theorem in projective 3-space. J. of Formalized Mathematics 2 (1990)

  19. Lescuyer, S.: First-class containers in Coq. Stud. Inform. Univ. 9(1), 87–127 (2011)

    Google Scholar 

  20. Li, H., Wu, Y.: Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry. J. Symb. Comput. 36(5), 717–762 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in Coq. Automated Deduction in Geometry 6301, 141–162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues theorem in Coq using ranks. In: Proceedings of the 2009 ACM symposium on applied computing, 1110–1115 (2009)

  23. Magaud, N., Narboux, J., Schreck, P.: A case study in formalizing projective geometry in Coq: Desargues theorem. Comput. Geom. Theory Appl. 45(8), 406–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meikle, L., Fleuriot, J.: Formalizing hilbert’s grundlagen in Isabelle/Isar. Theorem proving in higher logics 2758, 319–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Michelucci, D., Foufou, S., Lamarque, L., Schreck, P.: Geometric constraints solving:some tracks. ACM, 185–196 (2006)

  26. Michelucci, D., Schreck, P.: Detecting induced incidences in the projective plane. isiCAD Workshop Citeseer (2004)

  27. Michelucci, D., Schreck, P.: Incidence constraints: a combinatorial approach. Int. J. Comput. Geom. Appl. 16(05n06), 443–460 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Narboux, J.: A decision procedure for geometry in Coq. Theorem Proving in Higher Order Logics 3223, 225–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Narboux, J.: Mechanical theorem proving in tarski’s geometry. Automated Deduction in Geometry 4869, 139–156 (2006)

    Article  MATH  Google Scholar 

  30. Oxley, J.: Matroid theory, vol. 3. Oxford University Press, USA (2006)

    MATH  Google Scholar 

  31. Richter-Gebert, J.: Mechanical theorem proving in projective geometry. Ann. Math. Artif. Intell. 13, 139–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sozeau, M., Oury, N.: First-class type classes. Theorem Proving in Higher Order Logics 5170, 278–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tarski, A.: What is Elementary Geometry? (1983)

  34. Von Plato, J.: The axioms of constructive geometry. Ann. Pure Appl. Logic 76(2), 169–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Braun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, D., Magaud, N. & Schreck, P. Two cryptomorphic formalizations of projective incidence geometry. Ann Math Artif Intell 85, 193–212 (2019). https://doi.org/10.1007/s10472-018-9604-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9604-z

Keywords

Mathematics Subject Classification (2010)

Navigation