[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Decision Procedure for Geometry in Coq

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3223))

Included in the following conference series:

Abstract

We present in this paper the development of a decision procedure for affine plane geometry in the Coq proof assistant. Among the existing decision methods, we have chosen to implement one based on the area method developed by Chou, Gao and Zhang, which provides short and “readable” proofs for geometry theorems. The idea of the method is to express the goal to be proved using three geometric quantities and eliminate points in the reverse order of their construction thanks to some elimination lemmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  3. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company (1988)

    Google Scholar 

  4. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  5. Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in Hilbert’s elementary geometry. In: Automated Deduction in Geometry, pp. 306–324 (2000)

    Google Scholar 

  6. Euclide. Les éléments. Presses Universitaires de France (1998), Traduit par Bernard Vitrac

    Google Scholar 

  7. Guilhot, F.: Formalisation en coq d’un cours de géométrie pour le lycée. Journées Francophones des Langages Applicatifs (Janvier 2004)

    Google Scholar 

  8. Guilhot, F., Narboux, J.: Toward a “common” language for formally stating elementary geometry theorems. Draft

    Google Scholar 

  9. Harrison, J.: Meta theory and reflection in theorem proving:a survey and critique. Technical Report CRC-053, SRI International Cambridge Computer Science Research Center (1995)

    Google Scholar 

  10. Hilbert, D.: Les fondements de la géométrie. Dunod, Paris, Jacques Gabay edition (1971), Edition critique avec introduction et compléments préparée par Paul Rossier

    Google Scholar 

  11. Howe, D.: Computation meta theory in nuprl. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 238–257. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  12. Kahn, G.: Constructive geometry according to Jan von Plato. Coq contribution. Coq V5.10

    Google Scholar 

  13. The Coq development team. The Coq proof assistant reference manual. LogiCal Project, Version 8.0 (2004)

    Google Scholar 

  14. Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s grundlagen in isabelle/ isar. Theorem Proving in Higher Order Logics, 319–334 (2003)

    Google Scholar 

  15. Tarski, A.: A decision method for elementary algebra and geometry. University of California Press (1951)

    Google Scholar 

  16. Tarski, A.: What is elementary geometry? In: Suppes, P., Henkin, L., Tarski, A. (eds.) The axiomatic Method, with special reference to Geometry and Physics, pp. 16–29. North-Holland, Amsterdam (1959)

    Google Scholar 

  17. von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied Logic 76, 169–200 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu, W.-T.: On the decision problem and the mechanization of theorem proving in elementary geometry. Scientia Sinica 21, 157–179 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narboux, J. (2004). A Decision Procedure for Geometry in Coq. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2004. Lecture Notes in Computer Science, vol 3223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30142-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30142-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23017-5

  • Online ISBN: 978-3-540-30142-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics