[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A unified analysis of a class of quadratic finite volume element schemes on triangular meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a general framework for the coercivity analysis of a class of quadratic finite volume element (FVE) schemes on triangular meshes for solving elliptic boundary value problems. This class of schemes covers all the existing quadratic schemes of Lagrange type. With the help of a new mapping from the trial function space to the test function space, we find that each element matrix can be decomposed into three parts: the first part is the element stiffness matrix of the standard quadratic finite element method (FEM), the second part is the difference between the FVE and FEM on the element boundary, while the third part can be expressed as the tensor product of two vectors. Thanks to this decomposition, we obtain a sufficient condition to guarantee the existence, uniqueness, and coercivity result of the FVE solution on triangular meshes. Moreover, based on this sufficient condition, some minimum angle conditions with simple, analytic, and computable expressions can be derived and they depend only on the constructive parameters of the schemes. As a byproduct, some existing coercivity results are improved. Finally, an optimal H1 error estimate is proved by the standard techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R. E., Rose, D. J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Encyclopedia of Computational Mechanics, vol. 1, chapter 15. Wiley (2004)

  3. Bush, L., Ginting, V.: On the application of the continuous Galerkin finite element method for conservation problems. SIAM J. Sci. Comput. 35, A2953–A2975 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Li, Y.: Optimal bicubic finite volume methods on quadrilateral meshes. Adv. Appl. Math. Mech. 7, 454–471 (2015)

    MathSciNet  Google Scholar 

  7. Chen, Z.: A generalized difference method for the equations of heat conduction. Acta Sci. Natur. Univ. Sunyatseni 29, 6–13 (1990)

    MathSciNet  Google Scholar 

  8. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37, 191–253 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Xu, Y., Zhang, J.: A second-order hybrid finite volume method for solving the Stokes equation. Appl. Numer. Math. 119, 213–224 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Xu, Y., Zhang, Y.: Higher-order finite volume methods II: Inf-sup condition and uniform local ellipticity. J. Comput. Appl. Math. 265, 96–109 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comp. 84, 599–628 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Chou, S., Li, Q.: Error estimates in L2, H1 and \(L^{\infty }\) in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69, 103–120 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Chou, S., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45, 1639–1653 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Du, Y., Li, Y., Sheng, Z.: Quadratic finite volume method for a nonlinear elliptic problem. Adv. Appl. Math. Mech. 11, 838–869 (2019)

    MathSciNet  Google Scholar 

  15. Emonot, Ph: Methodes de volumes elements finis: applications aux equations de Navier-Stokes et resultats de convergence. Dissertation, (1992)

  16. Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods with convergence rates. SIAM J. Numer. Anal. 54, 2228–2255 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations. IMA J. Numer. Anal. 39, 983–1008 (2019)

    MathSciNet  Google Scholar 

  18. Ewing, R. E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: On first and second order box schemes. Computing 41, 277–296 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Hong, Q., Wu, J.: Coercivity results of a modified Q1-finite volume element scheme for anisotropic diffusion problems. Adv. Comput. Math. 44, 897–922 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Jin, G., Li, H., Zhang, Q., Zou, Q.: Linear and quadratic finite volume methods on triangular meshes for elliptic equations with singular solutions. Int. J. Numer. Anal. Mod. 13, 244–264 (2016)

    MathSciNet  MATH  Google Scholar 

  22. LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dikker, New York (2000)

    Google Scholar 

  24. Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17, 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57, 281–299 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Mod. 4, 14–34 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50, 2379–2399 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFoam and Matlab. Springer, Switherland (2016)

    MATH  Google Scholar 

  29. Petrila, T., Trif, D.: Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51, 271–292 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Tian, M., Chen, Z.: Quadratic element generalized differential methods for elliptic equations. Numer. Math. J. Chin. Univ. 13, 99–113 (1991)

    Google Scholar 

  32. Versteeg, H. K., Malalasekra, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method, 2nd edn. Pearson Education, England (2007)

    Google Scholar 

  33. Vogel, A., Xu, J., Wittum, G.: A generalization of the vertex-centered finite volume scheme to arbitrary high order. Comput. Visual. Sci. 13, 221–228 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Wang, P., Zhang, Z.: Quadratic finite volume element method for the air pollution model. Int. J. Comput. Math. 87, 2925–2944 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Wang, X., Huang, W., Li, Y.: Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comp. 88, 2665–2696 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal. 54, 2729–2749 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Wang, X., Li, Y.: Superconvergence of quadratic finite volume method on triangular meshes. J. Comput. Appl. Math. 348, 181–199 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Meth. PDEs 19, 693–708 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Xiong, Z., Deng, K.: A quadratic triangular finite volume element method for a semilinear elliptic equation. Adv. Appl. Math. Mech. 9, 186–204 (2017)

    MathSciNet  Google Scholar 

  40. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Yang, M.: Quadratic finite volume element methods for nonlinear parabolic equations. Numer. Math. J. Chin. Univ. 26, 257–266 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Yang, M.: Error estimates of quadratic finite volume element methods for nonlinear parabolic systems. Acta Math., Appl. Sin. 29, 29–38 (2006)

    MathSciNet  Google Scholar 

  43. Yang, M.: A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: M2AN 40, 1053–1067 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Zou, Q.: Some recent advances on vertex centered finite volume element methods for elliptic equations. Sci. China Math. 56, 2507–2522 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130, 363–393 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, Y., Wu, J.: A family of quadratic finite volume element schemes over triangular meshes for elliptic equations. Comput. Math. Appl. 79, 2473–2491 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, Y., Zou, Q.: A novel adaptive finite volume method for elliptic equations. Int. J. Numer. Anal. Mod. 14, 879–892 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Zhu, P., Li, R.: Generalized difference methods for second order elliptic partial differential equations. II. Quadrilateral subdivision. Numer. Math. J. Chin. Univ. 4, 360–375 (1982)

    MathSciNet  MATH  Google Scholar 

  49. Zou, Q.: An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations. J. Sci. Comput. 70, 112–124 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zou, Q., Guo, L., Deng, Q.: High order continuous local-conserving fluxes and finite-volume-like finite element solutions for elliptic equations. SIAM J. Numer. Anal. 55, 2666–2686 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their careful readings and valuable suggestions.

Funding

This work was partially supported by the National Natural Science Foundation of China (No. 11871009), CAEP Foundation (No. CX2019028), and Guangdong Natural Science Foundation (No. 2017B030311001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Wu.

Additional information

Communicated by: Aihui Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wu, J. A unified analysis of a class of quadratic finite volume element schemes on triangular meshes. Adv Comput Math 46, 71 (2020). https://doi.org/10.1007/s10444-020-09809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09809-8

Keywords

Mathematics Subject Classification (2010)

Navigation