[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Construction and analysis of the quadratic finite volume methods on tetrahedral meshes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A family of quadratic finite volume method (FVM) schemes are constructed and analyzed over tetrahedral meshes. In order to prove the stability and the error estimate, we propose the minimum V-angle condition on tetrahedral meshes, and the surface and volume orthogonal conditions on dual meshes. Through the technique of element analysis, the local stability is equivalent to a positive definiteness of a 9 × 9 element matrix, which is difficult to analyze directly or even numerically. With the help of the surface orthogonal condition and congruent transformation, this element matrix is reduced into a block diagonal matrix, and then we carry out the stability result under the minimum V-angle condition. It is worth mentioning that the minimum V-angle condition of the tetrahedral case is very different from a simple extension of the minimum angle condition for triangular meshes, while it is also convenient to use in practice. Based on the stability, we prove the optimal H1 and L2 error estimates, respectively, where the orthogonal conditions play an important role in ensuring the optimal L2 convergence rate. Numerical experiments are presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank R E, Rose D J. Some error estimates for the box method. SIAM J Numer Anal, 1987, 24: 777–787

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai Z Q. On the finite volume element method. Numer Math, 1991, 58: 713–735

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai Z Q, Douglas J, Park M. Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv Comput Math, 2003, 19: 3–33

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao W X, Zhang Z M, Zou Q S. Superconvergence of any order finite volume schemes for 1D general elliptic equations. J Sci Comput, 2013, 56: 566–590

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen C, Dond A K, Nataraj N, et al. Three first-order finite volume element methods for Stokes equations under minimal regularity assumptions. SIAM J Numer Anal, 2018, 56: 2648–2671

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen L. A new class of high order finite volume methods for second order elliptic equations. SIAM J Numer Anal, 2010, 47: 4021–4043

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Z Y, Li R H, Zhou A H. A note on the optimal L2-estimate of the finite volume element method. Adv Comput Math, 2002, 16: 291–303

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Z Y, Wu J F, Xu Y S. Higher-order finite volume methods for elliptic boundary value problems. Adv Comput Math, 2012, 37: 191–253

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen Z Y, Xu Y S, Zhang Y Y. A construction of higher-order finite volume methods. Math Comp, 2015, 84: 599–628

    Article  MathSciNet  MATH  Google Scholar 

  10. Ewing R E, Lin T, Lin Y P. On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J Numer Anal, 2002, 39: 1865–1888

    Article  MathSciNet  MATH  Google Scholar 

  11. Eymard R, Gallouët T, Herbin R. Finite Volume Methods. North-Holland: Amsterdam, 2000

    Book  MATH  Google Scholar 

  12. Gao F Z, Yuan Y R, Yang D P. An upwind finite-volume element scheme and its maximum-principle-preserving property for nonlinear convection-diffusion problem. Internat J Numer Methods Fluids, 2008, 56: 2301–2320

    Article  MathSciNet  MATH  Google Scholar 

  13. Hackbusch W. On first and second order box schemes. Computing, 1989, 41: 277–296

    Article  MathSciNet  MATH  Google Scholar 

  14. He W M, Zhang Z M, Zou Q S. Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes. Numer Math, 2018, 138: 473–500

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong Q, Wu J M. Coercivity results of a modified Q1-finite volume element scheme for anisotropic diffusion problems. Adv Comput Math, 2018, 44: 897–922

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong Q G, Wu S N, Xu J. An extended Galerkin analysis for elliptic problems. Sci China Math, 2021, 64: 2141–2158

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu J, Ma R, Zhang M. A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids. Sci China Math, 2021, 64: 2793–2816

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu J, Tian S, Zhang S. A family of 3D H2-nonconforming tetrahedral finite elements for the biharmonic equation. Sci China Math, 2020, 63: 1505–1522

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J, Chen Z X, He Y N. A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier-Stokes equations. Numer Math, 2012, 122: 279–304

    Article  MathSciNet  MATH  Google Scholar 

  20. Li R, Chen Z, Wu W. Generalized Difference Methods for Differential Equations. New York: Marcel Dekker, 2000

    Book  Google Scholar 

  21. Li Y H, Li R H. Generalized difference methods on arbitrary quadrilateral networks. J Comput Math, 1999, 17: 653–672

    MathSciNet  MATH  Google Scholar 

  22. Liebau F. The finite volume element method with quadratic basis functions. Computing, 1996, 57: 281–299

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin Y P, Yang M, Zou Q S. L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J Numer Anal, 2015, 53: 2030–2050

    Article  MATH  Google Scholar 

  24. Liu A, Joe B. Relationship between tetrahedron shape measures. BIT, 1994, 34: 268–287

    Article  MathSciNet  MATH  Google Scholar 

  25. Lv J L, Li Y H. L2 error estimate of the finite volume element methods on quadrilateral meshes. Adv Comput Math, 2010, 33: 129–148

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv J L, Li Y H. Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J Numer Anal, 2012, 50: 2379–2399

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmidt T. Box schemes on quadrilateral meshes. Computing, 1993, 51: 271–292

    Article  MathSciNet  MATH  Google Scholar 

  28. Sheng Z Q, Yuan G W. Analysis of the nonlinear scheme preserving the maximum principle for the anisotropic diffusion equation on distorted meshes. Sci China Math, 2022, in press

  29. Süli E. Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J Numer Anal, 1991, 28: 1419–1430

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang S, Hang X D, Yuan G W. A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes. J Comput Phys, 2017, 350: 590–606

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang X, Li Y H. L2 error estimates for high order finite volume methods on triangular meshes. SIAM J Numer Anal, 2016, 54: 2729–2749

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang X, Lv J L, Li Y H. New superconvergent structures developed from the finite volume element method in 1D. Math Comp, 2021, 90: 1179–1205

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu J C, Zou Q S. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer Math, 2009, 111: 469–492

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang M. Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions. Appl Math Comput, 2008, 196: 94–104

    MathSciNet  MATH  Google Scholar 

  35. Yang M. L2 error estimation of a quadratic finite volume element method for pseudo-parabolic equations in three spatial dimensions. Appl Math Comput, 2012, 218: 7270–7278

    MathSciNet  MATH  Google Scholar 

  36. Yang M, Liu J G, Zou Q S. Unified analysis of higher-order finite volume methods for parabolic problems on quadrilateral meshes. IMA J Numer Anal, 2016, 36: 872–896

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang Z M, Zou Q S. A family of finite volume schemes of arbitrary order on rectangular meshes. J Sci Comput, 2014, 58: 308–330

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang Z M, Zou Q S. Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer Math, 2015, 130: 363–393

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou Y H, Wu J M. A unified analysis of a class of quadratic finite volume element schemes on triangular meshes. Adv Comput Math, 2020, 46: 71

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou Y H, Wu J M. A family of quadratic finite volume element schemes over triangular meshes for elliptic equations. Comput Math Appl, 2020, 79: 2473–2491

    Article  MathSciNet  MATH  Google Scholar 

  41. Zou Q S. An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations. J Sci Comput, 2017, 70: 112–124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12071177 and 11701211), the Science Challenge Project (Grant No. TZ2016002) and the China Postdoctoral Science Foundation (Grant No. 2021M690437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Wang, X. & Li, Y. Construction and analysis of the quadratic finite volume methods on tetrahedral meshes. Sci. China Math. 66, 855–886 (2023). https://doi.org/10.1007/s11425-021-1984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1984-4

Keywords

MSC(2020)

Navigation