[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Difference potentials method for models with dynamic boundary conditions and bulk-surface problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we consider parabolic models with dynamic boundary conditions and parabolic bulk-surface problems in 3D. Such partial differential equations–based models describe phenomena that happen both on the surface and in the bulk/domain. These problems may appear in many applications, ranging from cell dynamics in biology, to grain growth models in polycrystalline materials. Using difference potentials framework, we develop novel numerical algorithms for the approximation of the problems. The constructed algorithms efficiently and accurately handle the coupling of the models in the bulk and on the surface, approximate 3D irregular geometry in the bulk by the use of only Cartesian meshes, employ fast Poisson solvers, and utilize spectral approximation on the surface. Several numerical tests are given to illustrate the robustness of the developed numerical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York (1992). Reprint of the 1972 edition

    MATH  Google Scholar 

  2. Albright, J., Epshteyn, Y., Steffen, K.R.: High-order accurate difference potentials methods for parabolic problems. Appl. Numer. Math. 93, 87–106 (2015). https://doi.org/10.1016/j.apnum.2014.08.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Albright, J., Epshteyn, Y., Xia, Q.: High-order accurate methods based on difference potentials for 2D parabolic interface models. Commun. Math. Sci. 15(4), 985–1019 (2017). https://doi.org/10.4310/CMS.2017.v15.n4.a4

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardsley, P., Barmak, K., Eggeling, E., Epshteyn, Y., Kinderlehrer, D., Ta’asan, S.: Towards a gradient flow for microstructure. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(4), 777–805 (2017). https://doi.org/10.4171/RLM/785

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: Stable finite element approximations of two-phase flow with soluble surfactant. J. Comput. Phys. 297, 530–564 (2015). https://doi.org/10.1016/j.jcp.2015.05.029

    Article  MathSciNet  MATH  Google Scholar 

  6. Burman, E., Hansbo, P., Larson, M.G., Zahedi, S.: Cut finite element methods for coupled bulk–surface problems. Numer. Math. 133(2), 203–231 (2015). https://doi.org/10.1007/s00211-015-0744-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, K.Y., Lai, M.C.: A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant. J. Comput. Phys. 257(part A), 1–18 (2014). https://doi.org/10.1016/j.jcp.2013.10.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Chernyshenko, A.Y., Olshanskii, M.A.: An adaptive octree finite element method for PDEs posed on surfaces. Comput. Methods Appl. Mech. Engrg. 291, 146–172 (2015). https://doi.org/10.1016/j.cma.2015.03.025

    Article  MathSciNet  MATH  Google Scholar 

  9. Chernyshenko, A.Y., Olshanskii, M.A., Vassilevski, Y.V.: A hybrid finite volume–finite element method for bulk-surface coupled problems. J. Comput. Phys. 352, 516–533 (2018). https://doi.org/10.1016/j.jcp.2017.09.064

    Article  MathSciNet  MATH  Google Scholar 

  10. Coclite, G.M., Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Continuous dependence on the boundary conditions for the Wentzell Laplacian. Semigroup Forum 77(1), 101–108 (2008). https://doi.org/10.1007/s00233-008-9068-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability estimates for parabolic problems with Wentzell boundary conditions. J. Differential Equations 245(9), 2595–2626 (2008). https://doi.org/10.1016/j.jde.2007.12.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Cusseddu, D., Edelstein-Keshet, L., Mackenzie, J., Portet, S., Madzvamuse, A.: A coupled bulk-surface model for cell polarisation. J. Theor. Biol. (2018)

  13. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013). https://doi.org/10.1017/S0962492913000056

    Article  MathSciNet  MATH  Google Scholar 

  14. Elliott, C.M., Ranner, T.: Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33(2), 377–402 (2013). https://doi.org/10.1093/imanum/drs022

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Ranner, T., Venkataraman, C.: Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-Ligand dynamics. SIAM J. Math. Anal. 49(1), 360–397 (2017). https://doi.org/10.1137/15m1050811

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, C.M., Ranner, T., Venkataraman, C.: Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics. SIAM J. Math. Anal. 49(1), 360–397 (2017). https://doi.org/10.1137/15M1050811

    Article  MathSciNet  MATH  Google Scholar 

  17. Epshteyn, Y.: Algorithms composition approach based on difference potentials method for parabolic problems. Commun. Math. Sci. 12(4), 723–755 (2014). https://doi.org/10.4310/CMS.2014.v12.n4.a7

    Article  MathSciNet  MATH  Google Scholar 

  18. Epshteyn, Y., Xia, Q.: Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D. J. Sci. Comput. 80(1), 26–59 (2019). https://doi.org/10.1007/s10915-019-00928-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, S., Olshanskii, M.A., Reusken, A.: A trace finite element method for a class of coupled bulk-interface transport problems. ESAIM Math. Model. Numer. Anal. 49(5), 1303–1330 (2015). https://doi.org/10.1051/m2an/2015013

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for coupled bulk-surface problems on time-dependent domains. Comput. Methods Appl. Mech. Eng. 307, 96–116 (2016). https://doi.org/10.1016/j.cma.2016.04.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovȧcs, B., Lubich, C.: Numerical analysis of parabolic problems with dynamic boundary conditions. IMA J. Numer. Anal. 37(1), 1–39 (2016). https://doi.org/10.1093/imanum/drw015

    Article  MathSciNet  Google Scholar 

  22. Liu, C., Wu, H.: An energetic variational approach for the cahn-hilliard equation with dynamic boundary conditions: Derivation and analysis. Arch. Ration. Mech. Anal. (2019)

  23. Ludvigsson, G., Steffen, K.R., Sticko, S., Wang, S., Xia, Q., Epshteyn, Y., Kreiss, G.: High-order numerical methods for 2d parabolic problems in single and composite domains. J. Sci. Comput. 76(2), 812–847 (2018). https://doi.org/10.1007/s10915-017-0637-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Madzvamuse, A., Chung, A.H.: The bulk-surface finite element method for reaction–diffusion systems on stationary volumes. Finite Elem. Anal. Des. 108, 9–21 (2016). https://doi.org/10.1016/j.finel.2015.09.002

    Article  Google Scholar 

  25. Magura, S., Petropavlovsky, S., Tsynkov, S., Turkel, E.: High-order numerical solution of the Helmholtz equation for domains with reentrant corners. Appl. Numer. Math. 118, 87–116 (2017). https://doi.org/10.1016/j.apnum.2017.02.013

    Article  MathSciNet  MATH  Google Scholar 

  26. Massing, A.: A cut discontinuous galerkin method for coupled bulk-surface problems. In: Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically Unfitted Finite Element Methods and Applications, pp 259–279. Springer International Publishing, Cham (2017)

  27. Medvinsky, M., Tsynkov, S., Turkel, E.: Direct implementation of high order BGT artificial boundary conditions. J. Comput. Phys. 376, 98–128 (2019). https://doi.org/10.1016/j.jcp.2018.09.040

    Article  MathSciNet  MATH  Google Scholar 

  28. Novak, I.L., Gao, F., Choi, Y.S., Resasco, D., Schaff, J.C., Slepchenko, B.M.: Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys. 226(2), 1271–1290 (2007). https://doi.org/10.1016/j.jcp.2007.05.025

    Article  MathSciNet  MATH  Google Scholar 

  29. Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114(3), 491–520 (2010). https://doi.org/10.1007/s00211-009-0260-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Olshanskii, M.A., Reusken, A.: Trace finite element methods for PDEs on surfaces. In: Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng., vol. 121, pp 211–258. Springer, Cham (2017)

  31. Petropavlovsky, S., Tsynkov, S., Turkel, E.: A method of boundary equations for unsteady hyperbolic problems in 3D. J. Comput. Phys. 365, 294–323 (2018). https://doi.org/10.1016/j.jcp.2018.03.039

    Article  MathSciNet  MATH  Google Scholar 

  32. Ryaben’kii, V.S.: Method of difference potentials and its applications. In: Springer Series in Computational Mathematics. Translated from the 2001 Russian original by Nikolai K. Kulman, vol. 30. Springer-Verlag, Berlin (2002), https://doi.org/10.1007/978-3-642-56344-7

  33. Ryaben’kii, V.S., Turchaninov, V.I., Epshteyn, Y.Y.: Algorithm composition scheme for problems in composite domains based on the difference potential method. Comput. Math. Math. Phys. 46(10), 1768–1784 (2006). https://doi.org/10.1134/s0965542506100137

    Article  MathSciNet  Google Scholar 

  34. Vȧzquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive–diffusive type. J. Differ. Equ. 250(4), 2143–2161 (2011). https://doi.org/10.1016/j.jde.2010.12.012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank P. Bowman and M. Cuma for assistance in computing facility, the CHPC at the University of Utah for providing computing allocations. The authors are also grateful to the referees for their most valuable suggestions.

Funding

Yekaterina Epshteyn received partial support of Simons Foundation Grant No. 415673 and of NSF Grant No. DMS-1905463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekaterina Epshteyn.

Additional information

Communicated by: Gunnar J Martinsson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epshteyn, Y., Xia, Q. Difference potentials method for models with dynamic boundary conditions and bulk-surface problems. Adv Comput Math 46, 67 (2020). https://doi.org/10.1007/s10444-020-09798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09798-8

Keywords

Mathematics Subject Classification (2010)

Navigation