Abstract
In this work, we consider parabolic models with dynamic boundary conditions and parabolic bulk-surface problems in 3D. Such partial differential equations–based models describe phenomena that happen both on the surface and in the bulk/domain. These problems may appear in many applications, ranging from cell dynamics in biology, to grain growth models in polycrystalline materials. Using difference potentials framework, we develop novel numerical algorithms for the approximation of the problems. The constructed algorithms efficiently and accurately handle the coupling of the models in the bulk and on the surface, approximate 3D irregular geometry in the bulk by the use of only Cartesian meshes, employ fast Poisson solvers, and utilize spectral approximation on the surface. Several numerical tests are given to illustrate the robustness of the developed numerical algorithms.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York (1992). Reprint of the 1972 edition
Albright, J., Epshteyn, Y., Steffen, K.R.: High-order accurate difference potentials methods for parabolic problems. Appl. Numer. Math. 93, 87–106 (2015). https://doi.org/10.1016/j.apnum.2014.08.002
Albright, J., Epshteyn, Y., Xia, Q.: High-order accurate methods based on difference potentials for 2D parabolic interface models. Commun. Math. Sci. 15(4), 985–1019 (2017). https://doi.org/10.4310/CMS.2017.v15.n4.a4
Bardsley, P., Barmak, K., Eggeling, E., Epshteyn, Y., Kinderlehrer, D., Ta’asan, S.: Towards a gradient flow for microstructure. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(4), 777–805 (2017). https://doi.org/10.4171/RLM/785
Barrett, J.W., Garcke, H., Nürnberg, R.: Stable finite element approximations of two-phase flow with soluble surfactant. J. Comput. Phys. 297, 530–564 (2015). https://doi.org/10.1016/j.jcp.2015.05.029
Burman, E., Hansbo, P., Larson, M.G., Zahedi, S.: Cut finite element methods for coupled bulk–surface problems. Numer. Math. 133(2), 203–231 (2015). https://doi.org/10.1007/s00211-015-0744-3
Chen, K.Y., Lai, M.C.: A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant. J. Comput. Phys. 257(part A), 1–18 (2014). https://doi.org/10.1016/j.jcp.2013.10.003
Chernyshenko, A.Y., Olshanskii, M.A.: An adaptive octree finite element method for PDEs posed on surfaces. Comput. Methods Appl. Mech. Engrg. 291, 146–172 (2015). https://doi.org/10.1016/j.cma.2015.03.025
Chernyshenko, A.Y., Olshanskii, M.A., Vassilevski, Y.V.: A hybrid finite volume–finite element method for bulk-surface coupled problems. J. Comput. Phys. 352, 516–533 (2018). https://doi.org/10.1016/j.jcp.2017.09.064
Coclite, G.M., Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Continuous dependence on the boundary conditions for the Wentzell Laplacian. Semigroup Forum 77(1), 101–108 (2008). https://doi.org/10.1007/s00233-008-9068-2
Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability estimates for parabolic problems with Wentzell boundary conditions. J. Differential Equations 245(9), 2595–2626 (2008). https://doi.org/10.1016/j.jde.2007.12.006
Cusseddu, D., Edelstein-Keshet, L., Mackenzie, J., Portet, S., Madzvamuse, A.: A coupled bulk-surface model for cell polarisation. J. Theor. Biol. (2018)
Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013). https://doi.org/10.1017/S0962492913000056
Elliott, C.M., Ranner, T.: Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33(2), 377–402 (2013). https://doi.org/10.1093/imanum/drs022
Elliott, C.M., Ranner, T., Venkataraman, C.: Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-Ligand dynamics. SIAM J. Math. Anal. 49(1), 360–397 (2017). https://doi.org/10.1137/15m1050811
Elliott, C.M., Ranner, T., Venkataraman, C.: Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics. SIAM J. Math. Anal. 49(1), 360–397 (2017). https://doi.org/10.1137/15M1050811
Epshteyn, Y.: Algorithms composition approach based on difference potentials method for parabolic problems. Commun. Math. Sci. 12(4), 723–755 (2014). https://doi.org/10.4310/CMS.2014.v12.n4.a7
Epshteyn, Y., Xia, Q.: Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D. J. Sci. Comput. 80(1), 26–59 (2019). https://doi.org/10.1007/s10915-019-00928-z
Gross, S., Olshanskii, M.A., Reusken, A.: A trace finite element method for a class of coupled bulk-interface transport problems. ESAIM Math. Model. Numer. Anal. 49(5), 1303–1330 (2015). https://doi.org/10.1051/m2an/2015013
Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for coupled bulk-surface problems on time-dependent domains. Comput. Methods Appl. Mech. Eng. 307, 96–116 (2016). https://doi.org/10.1016/j.cma.2016.04.012
Kovȧcs, B., Lubich, C.: Numerical analysis of parabolic problems with dynamic boundary conditions. IMA J. Numer. Anal. 37(1), 1–39 (2016). https://doi.org/10.1093/imanum/drw015
Liu, C., Wu, H.: An energetic variational approach for the cahn-hilliard equation with dynamic boundary conditions: Derivation and analysis. Arch. Ration. Mech. Anal. (2019)
Ludvigsson, G., Steffen, K.R., Sticko, S., Wang, S., Xia, Q., Epshteyn, Y., Kreiss, G.: High-order numerical methods for 2d parabolic problems in single and composite domains. J. Sci. Comput. 76(2), 812–847 (2018). https://doi.org/10.1007/s10915-017-0637-y
Madzvamuse, A., Chung, A.H.: The bulk-surface finite element method for reaction–diffusion systems on stationary volumes. Finite Elem. Anal. Des. 108, 9–21 (2016). https://doi.org/10.1016/j.finel.2015.09.002
Magura, S., Petropavlovsky, S., Tsynkov, S., Turkel, E.: High-order numerical solution of the Helmholtz equation for domains with reentrant corners. Appl. Numer. Math. 118, 87–116 (2017). https://doi.org/10.1016/j.apnum.2017.02.013
Massing, A.: A cut discontinuous galerkin method for coupled bulk-surface problems. In: Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically Unfitted Finite Element Methods and Applications, pp 259–279. Springer International Publishing, Cham (2017)
Medvinsky, M., Tsynkov, S., Turkel, E.: Direct implementation of high order BGT artificial boundary conditions. J. Comput. Phys. 376, 98–128 (2019). https://doi.org/10.1016/j.jcp.2018.09.040
Novak, I.L., Gao, F., Choi, Y.S., Resasco, D., Schaff, J.C., Slepchenko, B.M.: Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys. 226(2), 1271–1290 (2007). https://doi.org/10.1016/j.jcp.2007.05.025
Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114(3), 491–520 (2010). https://doi.org/10.1007/s00211-009-0260-4
Olshanskii, M.A., Reusken, A.: Trace finite element methods for PDEs on surfaces. In: Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng., vol. 121, pp 211–258. Springer, Cham (2017)
Petropavlovsky, S., Tsynkov, S., Turkel, E.: A method of boundary equations for unsteady hyperbolic problems in 3D. J. Comput. Phys. 365, 294–323 (2018). https://doi.org/10.1016/j.jcp.2018.03.039
Ryaben’kii, V.S.: Method of difference potentials and its applications. In: Springer Series in Computational Mathematics. Translated from the 2001 Russian original by Nikolai K. Kulman, vol. 30. Springer-Verlag, Berlin (2002), https://doi.org/10.1007/978-3-642-56344-7
Ryaben’kii, V.S., Turchaninov, V.I., Epshteyn, Y.Y.: Algorithm composition scheme for problems in composite domains based on the difference potential method. Comput. Math. Math. Phys. 46(10), 1768–1784 (2006). https://doi.org/10.1134/s0965542506100137
Vȧzquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive–diffusive type. J. Differ. Equ. 250(4), 2143–2161 (2011). https://doi.org/10.1016/j.jde.2010.12.012
Acknowledgments
The authors wish to thank P. Bowman and M. Cuma for assistance in computing facility, the CHPC at the University of Utah for providing computing allocations. The authors are also grateful to the referees for their most valuable suggestions.
Funding
Yekaterina Epshteyn received partial support of Simons Foundation Grant No. 415673 and of NSF Grant No. DMS-1905463.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Gunnar J Martinsson
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Epshteyn, Y., Xia, Q. Difference potentials method for models with dynamic boundary conditions and bulk-surface problems. Adv Comput Math 46, 67 (2020). https://doi.org/10.1007/s10444-020-09798-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-020-09798-8
Keywords
- Dynamic boundary conditions
- Bulk-surface models
- Difference potentials method
- Cartesian grids
- Irregular geometry
- Finite difference
- Spectral approximation
- Spherical harmonics