[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Continuous dependence on the boundary conditions for the Wentzell Laplacian

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

The solution u of the well-posed problem

$$\left\{\begin{array}{l@{\quad}l}\frac{\partial u}{\partial t}=\sum_{i,j=1}^{N}\partial_{i}(a_{ij}(x)\partial_{j}u),&(x,t)\in\Omega\times[0,+\infty),\\[2mm]u(x,0)=f(x),&x\in\Omega,\\[2mm]\sum_{i,j=1}^{N}\partial_{i}(a_{ij}(x)\partial_{j}u)+\beta (x)\sum_{i,j=1}^{N}a_{ij}(x)\partial_{j}un_{i}\\[1mm]\quad+\gamma(x)u-q\beta(x)\Delta_{LB}u=0,&(x,t)\in \partial\Omega\times[0,+\infty),\end{array}\right.$$

depends continuously on (a ij ,β,γ,q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Favini, A., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: Analytic semigroups and angles of concavity. Submitted for publication

  2. Favini, A., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: Uniformly elliptic operators in divergence form and general Wentzell boundary conditions. Preprint (2007)

  3. Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with generalized Wentzell boundary conditions. J. Evol. Equ. 2, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Favini, A., Lorenzi, A., Tanabe, H., Yagi, A.: An L p approach to singular linear parabolic equations in bounded domains. Osaka J. Math. 42, 385–406 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  6. Okazawa, N.: Sectorialness of second-order elliptic operators in divergence form. Proc. Am. Math. Soc. 113, 701–706 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Maria Coclite.

Additional information

Communicated by Jimmie D. Lawson.

Dedicated to Karl H. Hofmann on his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coclite, G.M., Favini, A., Goldstein, G.R. et al. Continuous dependence on the boundary conditions for the Wentzell Laplacian. Semigroup Forum 77, 101–108 (2008). https://doi.org/10.1007/s00233-008-9068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-008-9068-2

Keywords

Navigation