[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Analysis of parametric models

Linear methods and approximations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Parametric models in vector spaces are shown to possess an associated linear map, leading directly to reproducing kernel Hilbert spaces and affine/linear representations in terms of tensor products. From this map, analogues of correlation operators can be formed such that the associated linear map factorises the correlation. Its spectral decomposition and the associated Karhunen-Loève- or proper orthogonal decomposition in a tensor product follow directly, including an extension to continuous spectra. It is shown that all factorisations of a certain class are unitarily equivalent, as well as that every factorisation induces a different representation, and vice versa. No particular assumptions are made on the parameter set, other than that the vector space of real valued functions on this set allows an appropriate inner product on a subspace. A completely equivalent spectral and factorisation analysis can be carried out in kernel space. The relevance of these abstract constructions is shown on a number of mostly familiar examples, thus unifying many such constructions under one theoretical umbrella. From the factorisation, one obtains tensor representations, which may be cascaded, leading to tensors of higher degree. When carried over to a discretised level in the form of a model order reduction, such factorisations allow sparse low-rank approximations which lead to very efficient computations especially in high dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, A., Chinesta, F., Falcó, A.: On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch. Computat. Methods Eng. 17, 473–486 (2010). https://doi.org/10.1007/s11831-010-9048-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  3. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  4. Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K. (eds.): Model reduction of parametrized systems, MS&A — modeling simulation & applications, vol. 17. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-58786-8

    Google Scholar 

  5. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  6. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New York NY (1978)

  7. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer, Berlin (2014)

    Book  Google Scholar 

  8. Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Computat. Methods Eng. 18, 395–404 (2011). https://doi.org/10.1007/s11831-011-9064-7

    Article  Google Scholar 

  9. Cohen, N., Sharri, O., Shashua, A.: On the expressive power of deep learning: a tensor analysis. arXiv:1509.05009[cs.NE] (2016)

  10. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, Chichester (1989)

    Book  Google Scholar 

  11. Dautray, R., Lions, J.L.: Spectral Theory and Applications Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)

    MATH  Google Scholar 

  12. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Efficient analysis of high dimensional data in tensor formats. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering. https://doi.org/10.1007/978-3-642-31703-3_2, vol. 88, pp 31–56. Springer, Berlin (2013)

    Google Scholar 

  13. Gel’fand, I.M., Shilov, G.E.: Properties and Operations Generalized Functions, vol. 1. Academic Press, New York (1964)

    MATH  Google Scholar 

  14. Gel’fand, I.M., Shilov, G.E.: Theory of Differential Equations Generalized Functions, vol. 3. Academic Press, New York (1967)

    MATH  Google Scholar 

  15. Gel’fand, I.M., Shilov, G.E.: Spaces of Fundamental and Generalized Functions. Generalized Functions, vol. 2. Academic Press, New York (1968)

    MATH  Google Scholar 

  16. Gel’fand, I.M., Vilenkin, N.Y.: Applications of Harmonic Analysis Generalized Functions, vol. 4. Academic Press, New York (1964)

    MATH  Google Scholar 

  17. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications 31, 2029–2054 (2010). https://doi.org/10.1137/090764189

    Article  MathSciNet  MATH  Google Scholar 

  18. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 53–78 (2013). https://doi.org/10.1002/gamm.201310004

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, L.: Measurable functions on Hilbert space. Trans. Am. Math. Soc. 105 (3), 372–390 (1962). https://doi.org/10.2307/1993726

    Article  MathSciNet  MATH  Google Scholar 

  20. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Book  Google Scholar 

  21. Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  22. Karhunen, K.: Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 34, 1–7 (1946)

    MathSciNet  MATH  Google Scholar 

  23. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 37, 1–79 (1947)

    MathSciNet  MATH  Google Scholar 

  24. Karhunen, K.: Über die Struktur stationärer zufälliger Funktionen. Arkiv för Matematik 1, 141–160 (1950). https://doi.org/10.1007/BF02590624

    Article  MathSciNet  MATH  Google Scholar 

  25. Karhunen, K., Oliva Santos, F., Ferrer Martín, S.: Métodos lineales en el cálculo de probabilidades — Über lineare Methoden in der Wahrscheinlichkeitsrechnung. In: Trabajos de Estadística Y de Investigación Operativa, pp 59–137 (1947). https://doi.org/10.1007/bf03002862. Spanish Tranlation — Traducción Español [23]

    Article  Google Scholar 

  26. Karhunen, K., Selin, I.: On linear methods in probability theory — Über lineare Methoden in der Wahrscheinlichkeitsrechnung — 1947. U.S. Air Force — Project RAND T-131, The RAND Corporation, St Monica, CA, USA. https://www.rand.org/pubs/translations/T131.html. Englisch Translation [23] (1960)

  27. Khrulkov, V., Novikov, A., Oseledets, I.: Expressive power of recurrent neural net-works. arXiv:1711.00811[cs.LG] (2018)

  28. Krée, P., Soize, C.: Mathematics of Random Phenomena—Random Vibrations of Mechanical Structures. D. Reidel, Dordrecht (1986)

    Book  Google Scholar 

  29. Ladevèze, P., Chamoin, L.: On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200(23–24), 2032–2047 (2011). https://doi.org/10.1016/j.cma.2011.02.019

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Scientific Computation. Springer, Berlin (2010)

    Book  Google Scholar 

  31. Loève, M.: Fonctions alétoires de second ordre. C. R. Acad. Sci. 220, 295–296 (1945)

    Google Scholar 

  32. Loève, M.: Fonctions alétoires de second ordre. C. R. Acad. Sci. 222 (1946)

  33. Loève, M.: Probability Theory II Graduate Texts in Mathematics, 4th edn., vol. 46. Springer, Berlin (1978)

    Book  Google Scholar 

  34. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, Chichester (1969)

    MATH  Google Scholar 

  35. Matthies, H.G.: Uncertainty quantification with stochastic finite elements. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics. https://doi.org/10.1002/0470091355.ecm071. Part 1. Fundamentals. Encyclopaedia of Computational Mechanics, vol. 1. Wiley, Chichester (2007)

  36. Matthies, H.G.: Uncertainty quantification and Bayesian inversion. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics. 2nd edn. https://doi.org/10.1002/9781119176817.ecm2071. Part 1. Fundamentals. Encyclopaedia of Computational Mechanics, vol. 1. Wiley, Chichester (2017)

  37. Matthies, H.G., Litvinenko, A., Pajonk, O., Rosić, B.V., Zander, E.: Parametric and uncertainty computations with tensor product representations. In: Dienstfrey, A., Boisvert, R. (eds.) Uncertainty Quantification in Scientific Computing, IFIP Advances in Information and Communication Technology, vol. 377, pp 139–150. Springer, Boulder (2012). https://doi.org/10.1007/978-3-642-32677-6

    MATH  Google Scholar 

  38. Nouy, A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 17, 403–434 (2010). https://doi.org/10.1007/s11831-010-9054-1

    Article  MathSciNet  MATH  Google Scholar 

  39. Nouy, A., Le Maître, O.P.: Generalized spectral decomposition for stochastic nonlinear problems. J. Comput. Phys. 228(1), 202–235 (2009). https://doi.org/10.1016/j.jcp.2008.09.010

    Article  MathSciNet  MATH  Google Scholar 

  40. Oseledets, I.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88 (2010). https://doi.org/10.1016/j.laa.2009.07.024

    Article  MathSciNet  MATH  Google Scholar 

  41. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  42. Reed, M., Simon, B.: Fourier Analysis and Self-Adjointness, Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1975)

    MATH  Google Scholar 

  43. Reed, M., Simon, B.: Functional Analysis, Methods of Modern Mathematical Physics, vol. I. Academic Press, New York (1980)

    MATH  Google Scholar 

  44. Segal, I.E.: Tensor algebras over Hilbert spaces I. Trans. Am. Math. Soc. 81 (1), 106–134 (1956). https://doi.org/10.2307/1993234

    Article  MathSciNet  MATH  Google Scholar 

  45. Segal, I.E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc. 88(1), 12–41 (1958). https://doi.org/10.2307/1993234

    Article  MathSciNet  MATH  Google Scholar 

  46. Segal, I.E.: Nonlinear functions of weak processes. I. J. Funct. Anal. 4(3), 404–456 (1969). https://doi.org/10.1016/0022-1236(69)90007-X

    Article  MathSciNet  MATH  Google Scholar 

  47. Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)

    Book  Google Scholar 

  48. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications Computational Science & Engineering, vol. 12. SIAM, Philadelphia (2014)

    Google Scholar 

  49. Soize, C., Farhat, C.: A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and high-dimensional nonlinear models. Int. J. Numer. Methods Eng. 109, 837–888 (2017). https://doi.org/10.1002/nme.5312

    Article  MathSciNet  Google Scholar 

  50. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986)

    MATH  Google Scholar 

  51. Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  52. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions I. Springer, Berlin (1968)

    Google Scholar 

  53. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions II. Springer, Berlin (1968)

    Google Scholar 

  54. Yaglom, A.M.: An introduction to the theory of stationary random functions. Dover, Mineola, NY USA (2004)

  55. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann G. Matthies.

Additional information

Communicated by: Anthony Nouy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partly supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 880 and SPP 1886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthies, H.G., Ohayon, R. Analysis of parametric models. Adv Comput Math 45, 2555–2586 (2019). https://doi.org/10.1007/s10444-019-09735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09735-4

Keywords

Mathematics Subject Classification (2010)

Navigation