Abstract
Parametric models in vector spaces are shown to possess an associated linear map, leading directly to reproducing kernel Hilbert spaces and affine/linear representations in terms of tensor products. From this map, analogues of correlation operators can be formed such that the associated linear map factorises the correlation. Its spectral decomposition and the associated Karhunen-Loève- or proper orthogonal decomposition in a tensor product follow directly, including an extension to continuous spectra. It is shown that all factorisations of a certain class are unitarily equivalent, as well as that every factorisation induces a different representation, and vice versa. No particular assumptions are made on the parameter set, other than that the vector space of real valued functions on this set allows an appropriate inner product on a subspace. A completely equivalent spectral and factorisation analysis can be carried out in kernel space. The relevance of these abstract constructions is shown on a number of mostly familiar examples, thus unifying many such constructions under one theoretical umbrella. From the factorisation, one obtains tensor representations, which may be cascaded, leading to tensors of higher degree. When carried over to a discretised level in the form of a model order reduction, such factorisations allow sparse low-rank approximations which lead to very efficient computations especially in high dimensions.
Similar content being viewed by others
References
Ammar, A., Chinesta, F., Falcó, A.: On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch. Computat. Methods Eng. 17, 473–486 (2010). https://doi.org/10.1007/s11831-010-9048-z
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015). https://doi.org/10.1137/130932715
Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K. (eds.): Model reduction of parametrized systems, MS&A — modeling simulation & applications, vol. 17. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-58786-8
Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Dordrecht (2004)
Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New York NY (1978)
Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer, Berlin (2014)
Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Computat. Methods Eng. 18, 395–404 (2011). https://doi.org/10.1007/s11831-011-9064-7
Cohen, N., Sharri, O., Shashua, A.: On the expressive power of deep learning: a tensor analysis. arXiv:1509.05009[cs.NE] (2016)
Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, Chichester (1989)
Dautray, R., Lions, J.L.: Spectral Theory and Applications Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)
Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Efficient analysis of high dimensional data in tensor formats. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering. https://doi.org/10.1007/978-3-642-31703-3_2, vol. 88, pp 31–56. Springer, Berlin (2013)
Gel’fand, I.M., Shilov, G.E.: Properties and Operations Generalized Functions, vol. 1. Academic Press, New York (1964)
Gel’fand, I.M., Shilov, G.E.: Theory of Differential Equations Generalized Functions, vol. 3. Academic Press, New York (1967)
Gel’fand, I.M., Shilov, G.E.: Spaces of Fundamental and Generalized Functions. Generalized Functions, vol. 2. Academic Press, New York (1968)
Gel’fand, I.M., Vilenkin, N.Y.: Applications of Harmonic Analysis Generalized Functions, vol. 4. Academic Press, New York (1964)
Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications 31, 2029–2054 (2010). https://doi.org/10.1137/090764189
Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 53–78 (2013). https://doi.org/10.1002/gamm.201310004
Gross, L.: Measurable functions on Hilbert space. Trans. Am. Math. Soc. 105 (3), 372–390 (1962). https://doi.org/10.2307/1993726
Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)
Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)
Karhunen, K.: Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 34, 1–7 (1946)
Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 37, 1–79 (1947)
Karhunen, K.: Über die Struktur stationärer zufälliger Funktionen. Arkiv för Matematik 1, 141–160 (1950). https://doi.org/10.1007/BF02590624
Karhunen, K., Oliva Santos, F., Ferrer Martín, S.: Métodos lineales en el cálculo de probabilidades — Über lineare Methoden in der Wahrscheinlichkeitsrechnung. In: Trabajos de Estadística Y de Investigación Operativa, pp 59–137 (1947). https://doi.org/10.1007/bf03002862. Spanish Tranlation — Traducción Español [23]
Karhunen, K., Selin, I.: On linear methods in probability theory — Über lineare Methoden in der Wahrscheinlichkeitsrechnung — 1947. U.S. Air Force — Project RAND T-131, The RAND Corporation, St Monica, CA, USA. https://www.rand.org/pubs/translations/T131.html. Englisch Translation [23] (1960)
Khrulkov, V., Novikov, A., Oseledets, I.: Expressive power of recurrent neural net-works. arXiv:1711.00811[cs.LG] (2018)
Krée, P., Soize, C.: Mathematics of Random Phenomena—Random Vibrations of Mechanical Structures. D. Reidel, Dordrecht (1986)
Ladevèze, P., Chamoin, L.: On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200(23–24), 2032–2047 (2011). https://doi.org/10.1016/j.cma.2011.02.019
Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Scientific Computation. Springer, Berlin (2010)
Loève, M.: Fonctions alétoires de second ordre. C. R. Acad. Sci. 220, 295–296 (1945)
Loève, M.: Fonctions alétoires de second ordre. C. R. Acad. Sci. 222 (1946)
Loève, M.: Probability Theory II Graduate Texts in Mathematics, 4th edn., vol. 46. Springer, Berlin (1978)
Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, Chichester (1969)
Matthies, H.G.: Uncertainty quantification with stochastic finite elements. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics. https://doi.org/10.1002/0470091355.ecm071. Part 1. Fundamentals. Encyclopaedia of Computational Mechanics, vol. 1. Wiley, Chichester (2007)
Matthies, H.G.: Uncertainty quantification and Bayesian inversion. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics. 2nd edn. https://doi.org/10.1002/9781119176817.ecm2071. Part 1. Fundamentals. Encyclopaedia of Computational Mechanics, vol. 1. Wiley, Chichester (2017)
Matthies, H.G., Litvinenko, A., Pajonk, O., Rosić, B.V., Zander, E.: Parametric and uncertainty computations with tensor product representations. In: Dienstfrey, A., Boisvert, R. (eds.) Uncertainty Quantification in Scientific Computing, IFIP Advances in Information and Communication Technology, vol. 377, pp 139–150. Springer, Boulder (2012). https://doi.org/10.1007/978-3-642-32677-6
Nouy, A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 17, 403–434 (2010). https://doi.org/10.1007/s11831-010-9054-1
Nouy, A., Le Maître, O.P.: Generalized spectral decomposition for stochastic nonlinear problems. J. Comput. Phys. 228(1), 202–235 (2009). https://doi.org/10.1016/j.jcp.2008.09.010
Oseledets, I.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88 (2010). https://doi.org/10.1016/j.laa.2009.07.024
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286
Reed, M., Simon, B.: Fourier Analysis and Self-Adjointness, Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1975)
Reed, M., Simon, B.: Functional Analysis, Methods of Modern Mathematical Physics, vol. I. Academic Press, New York (1980)
Segal, I.E.: Tensor algebras over Hilbert spaces I. Trans. Am. Math. Soc. 81 (1), 106–134 (1956). https://doi.org/10.2307/1993234
Segal, I.E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc. 88(1), 12–41 (1958). https://doi.org/10.2307/1993234
Segal, I.E.: Nonlinear functions of weak processes. I. J. Funct. Anal. 4(3), 404–456 (1969). https://doi.org/10.1016/0022-1236(69)90007-X
Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)
Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications Computational Science & Engineering, vol. 12. SIAM, Philadelphia (2014)
Soize, C., Farhat, C.: A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and high-dimensional nonlinear models. Int. J. Numer. Methods Eng. 109, 837–888 (2017). https://doi.org/10.1002/nme.5312
Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986)
Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, Princeton (2010)
Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions I. Springer, Berlin (1968)
Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions II. Springer, Berlin (1968)
Yaglom, A.M.: An introduction to the theory of stationary random functions. Dover, Mineola, NY USA (2004)
Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Anthony Nouy
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partly supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 880 and SPP 1886.
Rights and permissions
About this article
Cite this article
Matthies, H.G., Ohayon, R. Analysis of parametric models. Adv Comput Math 45, 2555–2586 (2019). https://doi.org/10.1007/s10444-019-09735-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-019-09735-4
Keywords
- Parametric models
- Reproducing kernel Hilbert space
- Correlation
- Factorisation
- Spectral decomposition
- Representation