Abstract
Stochastic models share many characteristics with generic parametric models. In some ways they can be regarded as a special case. But for stochastic models there is a notion of weak distribution or generalised random variable, and the same arguments can be used to analyse parametric models. Such models in vector spaces are connected to a linear map, and in infinite dimensional spaces are a true generalisation. Reproducing kernel Hilbert space and affine- / linear- representations in terms of tensor products are directly related to this linear operator. This linear map leads to a generalised correlation operator, and representations are connected with factorisations of the correlation operator. The fitting counterpart in the stochastic domain to make this point of view as simple as possible are algebras of random variables with a distinguished linear functional, the state, which is interpreted as expectation. The connections of factorisations of the generalised correlation to the spectral decomposition, as well as the associated Karhunen-Loève- or proper orthogonal decomposition will be sketched. The purpose of this short note is to show the common theoretical background and pull some lose ends together.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015). https://doi.org/10.1007/10.1137/130932715
Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K. (eds.): Model reduction of parametrized systems. In: MS&A – Modeling, Simulation & Applications, vol. 17. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-58786-8
Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Dordrecht (2004)
Bogachev, V.I., Smolyanov, O.G.: Topological Vector Spaces and Their Applications. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-57117-1
Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New York (1978)
Courant, R., Hilbert, D.: Methods of Mathematical Physics. John Wiley & Sons, Chichester (1989)
Dautray, R., Lions, J.L.: Spectral theory and applications. In: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)
Gel’fand, I.M., Vilenkin, N.Y.: Applications of harmonic analysis. In: Generalized Functions, vol. 4. Academic Press, New York (1964)
Gross, L.: Measurable functions on Hilbert space. Trans. Am. Math. Soc. 105(3), 372–390 (1962). https://doi.org/10.2307/1993726
Hiai, F., Petz, D.: The semicircle law, free random variables and entropy. In: Mathematical Surveys and Monographs, vol. 77. American Mathematical Society, Providence (2000)
Holden, H., Øksendal, B., Ubøe, J., Zhang, T.S.: Stochastic Partial Differential Equations. Birkhäuser, Basel (1996)
Janson, S.: Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge (1997)
Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys. 37, 1–79 (1947)
Karhunen, K., Selin (transl.), I.: On linear methods in probability theory – Über lineare Methoden in der Wahrscheinlichkeitsrechnung – 1947. U.S. Air Force – Project RAND T-131, The RAND Corporation, St Monica, CA (1960). https://www.rand.org/pubs/translations/T131.html. English Translation
Krée, P., Soize, C.: Mathematics of Random Phenomena—Random Vibrations of Mechanical Structures. D. Reidel, Dordrecht (1986)
Matthies, H.G.: Uncertainty quantification with stochastic finite elements. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics, vol. 1. John Wiley & Sons, Chichester (2007). https://doi.org/10.1002/0470091355.ecm071. Part 1. Fundamentals. Encyclopaedia of Computational Mechanics
Matthies, H.G., Ohayon, R.: Analysis of parametric models for coupled systems (2018). arXiv: 1806.07255 [math.NA]. http://arxiv.org/1806.07255
Matthies, H.G., Ohayon, R.: Analysis of parametric models – linear methods and approximations (2018). arXiv: 1806.01101 [math.NA]. http://arxiv.org/1806.01101
Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005). https://doi.org/10.1016/j.cma.2004.05.027
Matthies, H.G., Litvinenko, A., Pajonk, O., Rosić, B.V., Zander, E.: Parametric and uncertainty computations with tensor product representations. In: Dienstfrey, A., Boisvert, R. (eds.) Uncertainty Quantification in Scientific Computing. IFIP Advances in Information and Communication Technology, vol. 377, pp. 139–150. Springer, Boulder (2012). https://doi.org/10.1007/978-3-642-32677-6
Mingo, J.A., Speicher, R.: Free probability and random matrices. In: Fields Institute Monographs, vol. 35. Springer, Berlin (2017). https://doi.org/10.1007/978-1-4939-6942-5
Segal, I.E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc. 88(1), 12–41 (1958). https://doi.org/10.2307/1993234
Segal, I.E.: Nonlinear functions of weak processes. I. J. Funct. Anal. 4(3), 404–456 (1969). https://doi.org/10.1016/0022-1236(69)90007-X
Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)
Speicher, R.: Free probability theory. Jahresber Dtsch Math-Ver 119, 3–30 (2017). https://doi.org/10.1365/s13291-016-0150-5
Sullivan, T.J.: Introduction to uncertainty quantification. In: Texts in Applied Mathematics, vol. 63. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-23395-6
Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables. In: CRM Monograph Series, vol. 1. American Mathematical Society, Providence (1992)
Whittle, P.: Probability via Expectation, 4th edn. Springer Texts in Statistics. Springer, Berlin (2000)
Acknowledgements
Partly supported by the Deutsche Forschungsgemeinschaft (DFG) through SPP 1886 and SFB 880.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 National Technology & Engineering Solutions of Sandia, and The Editor(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Matthies, H.G. (2020). Analysis of Probabilistic and Parametric Reduced Order Models. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-48721-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48720-1
Online ISBN: 978-3-030-48721-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)