Abstract
The paper provides an approach for constructing multivariate radial kernels satisfying higher-order generalized Strang-Fix conditions from a given univariate generator. There are three key features of the approach. First, the kernels are explicitly expressed only by the derivatives of the f-form of the generator without computing any Fourier transforms. Second, it includes the radial kernels with the highest-order generalized Strang-Fix conditions. Finally, it requires only computing univariate derivatives of the f-form. Therefore, the approach is simple, efficient and easy to implement. As examples, the paper constructs radial kernels from some commonly used generators, including the Gaussian functions, the inverse multiquadric functions and compactly supported positive definite functions.
Similar content being viewed by others
References
Beatson, R., Powell, M.: Univariate multiquadric approximation: quasi-interpolation to scattered data. Constr. Approx. 8, 275–288 (1992)
Beatson, R., Light, W.: Quasi-interpolation in the absence of polynomial reproduction. In: Braess, D., Schumaker, L.L. (eds.) Numerical Methods of Approximation Theory, vol. 9, pp 21–39. Birkhauser, Basel (1992)
Bozzini, M., Dyn, N., Rossini, M.: Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math. 236, 577–564 (2011)
Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle-Matérn and polyharmonic kernels. Adv. Comput. Math. 39, 129–142 (2013)
Bozzini, M., Rossini, M., Schaback, R., Volontè, E.: Radial kernels via scale derivatives. Adv. Comput. Math. 41, 277–291 (2015)
Buhmann, M.: Convergence of univariate quasi-interpolation using Multiquadrics. IMA J. Numer. Anal. 8, 365–383 (1988)
Buhmann, M., Dyn, N., Levin, D: On quasi interpolation by radial basis functions with scattered data. Constr. Appr. 11, 239–254 (1995)
Buhmann, M.: Radial Basis Functions, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, UK (2003)
Buhmann, M., Dai, F.: Pointwise approximation with quasi-interpolation by radial basis functions. J. Approx. Theory 192, 156–192 (2015)
Cheney, E., Light, W., Xu, Y: On kernels and approximation orders, approximation theory (Memphis, TN). Lecture Notes in Pure and Applied Mathematics, Dekker, New York 138, 227–242 (1992)
Chui, C. K., Dimond, H.: A characterization of multivariate quasi-interpolation formulas and its applications. Numer. Math. 5, 1–17 (1980)
Chui, C. K., Lai, M. J.: A multivariate analog of Marsden’s identity and a quasi-interpolation scheme. Constr. Approx. 8, 85–99 (1987)
Chui, C. K., Diamond, H.: A natural formulation of quasi-interpolation by multivariate splines. Proc. Amer. Math. Soc. 99, 643–646 (1987)
Chui, C. K., Dimond, H., Raphael, L.: Shape-preserving quasi-interpolation and interpolation by box spline surfaces. J. Comput. Appl. Math. 25, 169–198 (1989)
Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory. 8, 19–45 (1973)
Dyn, N., Jackson, I., Levin, D., Ron, A: On multivariate approximation by integer translates of a basis function. Israel J. Math. 78, 95–130 (1992)
Fuselier, E., Wright, G.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41, 23–53 (2015)
Gao, W. W., Wu, Z. M.: Quasi-interpolation for linear functional data. J. Comput. Appl. Math. 236, 3256–3264 (2012)
Gao, W. W., Wu, Z. M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl. Math. 271, 20–30 (2014)
Gao, W. W., Wu, Z. M.: Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant. Comput. Math Appl. 69, 696–707 (2015)
Grohs, P.: Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal. 33, 849–874 (2013)
Han, X.: Multi-node higher order expansions of a function. J. Approx. Theory. 124, 242–253 (2003)
Hubbert, S.: Closed form representations for a class of compactly supported radial basis functions. Adv. Comput. Math. 36, 115–136 (2012)
Jia, R. Q., Lei, J. J.: A new version of Strang-Fix conditions. J. Approx. Theory. 74, 221–225 (1993)
Lanzara, F., Maz’ya, V., Schmidt, G.: Approximate approximations from scattered data. J. Approx. Theory. 145, 141–170 (2007)
Lanzara, F., Maz’ya, V., Schmidt, G.: Fast cubature of volume potentials over rectangular domains by approximate approximations. Appl. Comput. Harmon. Anal. 36, 167–182 (2014)
Lanzara, F., Maz’ya, V., Schmidt, G.: Approximation of solutions to multidimensional parabolic equations by approximate approximations. Appl. Comput. Harmon. Anal. doi:10.1016/j.acha.2015.06.001
Li, X., Micchelli, C.: Approximation by radial bases and neural networks. Numer. Algor. 25, 241–262 (2000)
Light, W., Cheney, E.: Quasi-interpolation with translates of a function having noncompact support. Constr. Approx. 8, 35–48 (1992)
Lyche, T., Schumaker, L., Stanley, S.: Quasi-interpolants based on trigonometric splines. J. Approx. Theory. 95, 280–309 (1998)
Lyche, T., Manni, C., Sablonnière, P.: Quasi-interpolation projectors for box splines. J. Comput. Appl. Math. 2, 416–429 (2008)
Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)
Maz’ya, V., Schmidt, G: On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16, 13–29 (1996)
Maz’ya, V., Schmidt, G.: Construction of basis functions for high order approximate approximations, Mathematical Aspects of boundary elements methods (Palaiseau). Chapman and Hall/CRC Res. Notes Math. 414, 191–202 (1998)
Maz’ya, V., Schmidt, G: On quasi-interpolation with non-uniformly distributed centers on domains and manifolds. J. Approx. Theory. 110, 125–145 (2001)
Mhaskar, H., Narcowich, F., Ward, J.: Quasi-interpolation in shift invariant spaces. J. Math. Anal. Appl. 251, 356–363 (2000)
Micchelli, C.: Interpolation of scattered data: distance matrix and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)
Rabut, C.: An introduction to Schoenberg’s approximation. Comput. Math. Appl. 24, 139–175 (1991)
Roman, S: The formula of Faa di Bruno. Amer. Math. Month. 87, 805–809 (1980)
Sablonnière, P.: Weierstrass quasi-interpolants. J. Approx. Theory. 180, 32–48 (2014)
Schaback, R., Wu, Z. M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory. 91, 320–331 (1997)
Schaback, R.: The missing Wendland functions. Adv. Comp. Math. 34, 67–81 (2011)
Sonar, T.: On families of pointwise optimal finite volume ENO approximations. SIAM J. Numer. Anal. 25, 2350–2369 (1998)
Speleers, H.: A family of smooth quasi-interpolants defined over Powell-Sabin triangulations. Constr. Approx. 41, 297–324 (2015)
Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)
Strang, G., Fix, G.: A fourier analysis of the finite-element method. In: Geymonat, G. (ed.) Constructive Aspects of Functional Analysis, (C.I.M.E., Rome), pp 793–840 (1973)
Wendland, H.: Piecewise polynomial, positive definite and compactly suppported radial functions of minimal degree. Adv Comput. Math. 4, 389–396 (1995)
Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)
Wu, R. F., Wu, T. R., Li, H. L.: A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction. J. Comput. Appl. Math. 274, 88–108 (2015)
Wu, Z. M.: Multivariate compactly supported positive definite radial basis functions. Adv. Comput. Math. 4, 283–292 (1995)
Wu, Z. M.: Characterization of positive definite radial functions. In: Daehlen, M., Lyche, T., Schumaker, L. L. (eds.) Mathematical Methods for Curves and Swfaces, pp 573–578. Vanderbilt University Press, Nashville (1995)
Wu, Z. M.: Operators on radial functions. J. Comput. Appl. Math. 73, 257–270 (1996)
Wu, Z. M.: Generalized Bochner’s theorem for radial function. Approx. Theory Appl. 13, 47–57 (1997)
Wu, Z. M.: Compactly supported positive definite radial basis functions and the Strang-Fix condition. Appl. Math Comput. 84, 115–124 (1997)
Wu, Z. M., Liu, J. P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)
Wu, Z. M., Sun, X. P., Ma, L. M.: Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Adv. Comput. Math. 38, 187–205 (2013)
Vainikko, E., Vainikko, G.: A spline product quasi-interpolation method for weakly singular fredholm integral equations. SIAM J. Numer. Anal. 46, 1799–1820 (2008)
Acknowledgments
This work is supported by NSFC (11501006, 61672032), NSFC Key Project (91330201), SGST (12DZ 2272800), Joint Research Fund by National Natural Science Foundation of China and Research Grants Council of Hong Kong (11461161006), Fund of Introducing Leaders of Science and Technology of Anhui University (J10117700057) the 4th Project of Cultivating Backbone of Young Teachers of Anhui University (J01005138), and Anhui Provincial Science and Technology Major Project (16030701091).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Tomas Sauer
Rights and permissions
About this article
Cite this article
Gao, W., Wu, Z. Constructing radial kernels with higher-order generalized Strang-Fix conditions. Adv Comput Math 43, 1355–1375 (2017). https://doi.org/10.1007/s10444-017-9528-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-017-9528-x