[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Constructing radial kernels with higher-order generalized Strang-Fix conditions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper provides an approach for constructing multivariate radial kernels satisfying higher-order generalized Strang-Fix conditions from a given univariate generator. There are three key features of the approach. First, the kernels are explicitly expressed only by the derivatives of the f-form of the generator without computing any Fourier transforms. Second, it includes the radial kernels with the highest-order generalized Strang-Fix conditions. Finally, it requires only computing univariate derivatives of the f-form. Therefore, the approach is simple, efficient and easy to implement. As examples, the paper constructs radial kernels from some commonly used generators, including the Gaussian functions, the inverse multiquadric functions and compactly supported positive definite functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beatson, R., Powell, M.: Univariate multiquadric approximation: quasi-interpolation to scattered data. Constr. Approx. 8, 275–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beatson, R., Light, W.: Quasi-interpolation in the absence of polynomial reproduction. In: Braess, D., Schumaker, L.L. (eds.) Numerical Methods of Approximation Theory, vol. 9, pp 21–39. Birkhauser, Basel (1992)

  3. Bozzini, M., Dyn, N., Rossini, M.: Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines. J. Comput. Appl. Math. 236, 577–564 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle-Matérn and polyharmonic kernels. Adv. Comput. Math. 39, 129–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bozzini, M., Rossini, M., Schaback, R., Volontè, E.: Radial kernels via scale derivatives. Adv. Comput. Math. 41, 277–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buhmann, M.: Convergence of univariate quasi-interpolation using Multiquadrics. IMA J. Numer. Anal. 8, 365–383 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buhmann, M., Dyn, N., Levin, D: On quasi interpolation by radial basis functions with scattered data. Constr. Appr. 11, 239–254 (1995)

    Article  MATH  Google Scholar 

  8. Buhmann, M.: Radial Basis Functions, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  9. Buhmann, M., Dai, F.: Pointwise approximation with quasi-interpolation by radial basis functions. J. Approx. Theory 192, 156–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheney, E., Light, W., Xu, Y: On kernels and approximation orders, approximation theory (Memphis, TN). Lecture Notes in Pure and Applied Mathematics, Dekker, New York 138, 227–242 (1992)

    MATH  Google Scholar 

  11. Chui, C. K., Dimond, H.: A characterization of multivariate quasi-interpolation formulas and its applications. Numer. Math. 5, 1–17 (1980)

    Google Scholar 

  12. Chui, C. K., Lai, M. J.: A multivariate analog of Marsden’s identity and a quasi-interpolation scheme. Constr. Approx. 8, 85–99 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Chui, C. K., Diamond, H.: A natural formulation of quasi-interpolation by multivariate splines. Proc. Amer. Math. Soc. 99, 643–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chui, C. K., Dimond, H., Raphael, L.: Shape-preserving quasi-interpolation and interpolation by box spline surfaces. J. Comput. Appl. Math. 25, 169–198 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory. 8, 19–45 (1973)

    Article  MATH  Google Scholar 

  16. Dyn, N., Jackson, I., Levin, D., Ron, A: On multivariate approximation by integer translates of a basis function. Israel J. Math. 78, 95–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuselier, E., Wright, G.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41, 23–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, W. W., Wu, Z. M.: Quasi-interpolation for linear functional data. J. Comput. Appl. Math. 236, 3256–3264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, W. W., Wu, Z. M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl. Math. 271, 20–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, W. W., Wu, Z. M.: Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant. Comput. Math Appl. 69, 696–707 (2015)

    Article  MathSciNet  Google Scholar 

  21. Grohs, P.: Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal. 33, 849–874 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, X.: Multi-node higher order expansions of a function. J. Approx. Theory. 124, 242–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hubbert, S.: Closed form representations for a class of compactly supported radial basis functions. Adv. Comput. Math. 36, 115–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jia, R. Q., Lei, J. J.: A new version of Strang-Fix conditions. J. Approx. Theory. 74, 221–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lanzara, F., Maz’ya, V., Schmidt, G.: Approximate approximations from scattered data. J. Approx. Theory. 145, 141–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lanzara, F., Maz’ya, V., Schmidt, G.: Fast cubature of volume potentials over rectangular domains by approximate approximations. Appl. Comput. Harmon. Anal. 36, 167–182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lanzara, F., Maz’ya, V., Schmidt, G.: Approximation of solutions to multidimensional parabolic equations by approximate approximations. Appl. Comput. Harmon. Anal. doi:10.1016/j.acha.2015.06.001

  28. Li, X., Micchelli, C.: Approximation by radial bases and neural networks. Numer. Algor. 25, 241–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Light, W., Cheney, E.: Quasi-interpolation with translates of a function having noncompact support. Constr. Approx. 8, 35–48 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lyche, T., Schumaker, L., Stanley, S.: Quasi-interpolants based on trigonometric splines. J. Approx. Theory. 95, 280–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lyche, T., Manni, C., Sablonnière, P.: Quasi-interpolation projectors for box splines. J. Comput. Appl. Math. 2, 416–429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maz’ya, V., Schmidt, G: On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16, 13–29 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maz’ya, V., Schmidt, G.: Construction of basis functions for high order approximate approximations, Mathematical Aspects of boundary elements methods (Palaiseau). Chapman and Hall/CRC Res. Notes Math. 414, 191–202 (1998)

    Google Scholar 

  35. Maz’ya, V., Schmidt, G: On quasi-interpolation with non-uniformly distributed centers on domains and manifolds. J. Approx. Theory. 110, 125–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mhaskar, H., Narcowich, F., Ward, J.: Quasi-interpolation in shift invariant spaces. J. Math. Anal. Appl. 251, 356–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Micchelli, C.: Interpolation of scattered data: distance matrix and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rabut, C.: An introduction to Schoenberg’s approximation. Comput. Math. Appl. 24, 139–175 (1991)

    MathSciNet  Google Scholar 

  39. Roman, S: The formula of Faa di Bruno. Amer. Math. Month. 87, 805–809 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sablonnière, P.: Weierstrass quasi-interpolants. J. Approx. Theory. 180, 32–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schaback, R., Wu, Z. M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory. 91, 320–331 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schaback, R.: The missing Wendland functions. Adv. Comp. Math. 34, 67–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sonar, T.: On families of pointwise optimal finite volume ENO approximations. SIAM J. Numer. Anal. 25, 2350–2369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Speleers, H.: A family of smooth quasi-interpolants defined over Powell-Sabin triangulations. Constr. Approx. 41, 297–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  46. Strang, G., Fix, G.: A fourier analysis of the finite-element method. In: Geymonat, G. (ed.) Constructive Aspects of Functional Analysis, (C.I.M.E., Rome), pp 793–840 (1973)

    Google Scholar 

  47. Wendland, H.: Piecewise polynomial, positive definite and compactly suppported radial functions of minimal degree. Adv Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)

    MATH  Google Scholar 

  49. Wu, R. F., Wu, T. R., Li, H. L.: A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction. J. Comput. Appl. Math. 274, 88–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu, Z. M.: Multivariate compactly supported positive definite radial basis functions. Adv. Comput. Math. 4, 283–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, Z. M.: Characterization of positive definite radial functions. In: Daehlen, M., Lyche, T., Schumaker, L. L. (eds.) Mathematical Methods for Curves and Swfaces, pp 573–578. Vanderbilt University Press, Nashville (1995)

    Google Scholar 

  52. Wu, Z. M.: Operators on radial functions. J. Comput. Appl. Math. 73, 257–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, Z. M.: Generalized Bochner’s theorem for radial function. Approx. Theory Appl. 13, 47–57 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Wu, Z. M.: Compactly supported positive definite radial basis functions and the Strang-Fix condition. Appl. Math Comput. 84, 115–124 (1997)

    MathSciNet  MATH  Google Scholar 

  55. Wu, Z. M., Liu, J. P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu, Z. M., Sun, X. P., Ma, L. M.: Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Adv. Comput. Math. 38, 187–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Vainikko, E., Vainikko, G.: A spline product quasi-interpolation method for weakly singular fredholm integral equations. SIAM J. Numer. Anal. 46, 1799–1820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (11501006, 61672032), NSFC Key Project (91330201), SGST (12DZ 2272800), Joint Research Fund by National Natural Science Foundation of China and Research Grants Council of Hong Kong (11461161006), Fund of Introducing Leaders of Science and Technology of Anhui University (J10117700057) the 4th Project of Cultivating Backbone of Young Teachers of Anhui University (J01005138), and Anhui Provincial Science and Technology Major Project (16030701091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Wu.

Additional information

Communicated by: Tomas Sauer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Wu, Z. Constructing radial kernels with higher-order generalized Strang-Fix conditions. Adv Comput Math 43, 1355–1375 (2017). https://doi.org/10.1007/s10444-017-9528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9528-x

Keywords

Mathematics Subject Classification (2010)

Navigation