Abstract
We consider the functions h μ,ν introduced by Zastavnyi in 2002. The family of these functions is a subfamily of Buhmann’s functions and contains the families of functions introduced by Trigub in 1987 and Wendland in 1995. We investigate the problems of positive definiteness and smoothness at zero for the linear combinations β ε2 h μ,ν (x/β 2) − β ε1 μ,ν (x/β 1).
Similar content being viewed by others
References
R. Askey, “Radial characteristic functions,” Technical Report (Univ. of Winsconsin, 1973).
R. Askey and H. Pollard, “Some absolutely monotonic and completely monotonic functions,” SIAM J. Math. Anal. 5, 58–63 (1974).
C. Berg, E. Porcu, and J. Mateu, “The Dagum family of completely monotonic functions,” Bernoulli 14, 1134–1149 (2008).
M. Bevilacqua, T. Faouzi, R. Furrer, and E. Porcu, “Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics,” Technical Report (Univ. of Valparaiso); arXiv:1607.06921.
M. D. Buhmann, “A new class of radial basis functions with compact support,” Math. Comput. 70 (233), 307–318 (2000).
D. J. Daley and E. Porcu, “Dimension walks through Schoenberg spectralmeasures,” Proc. Am. Math. Soc. 142, 1813–1824 (2014).
D. J. Daley, E. Porcu, and M. Bevilacqua, “Classes of compactly supported covariance functions for multivariate random fields,” Stoch. Environ. Res. Risk Assess. 29, 1249–1263 (2015).
W. Feller, “Completely monotone functions and sequences,” Trans. Am. Math. Soc. 5, 661–674 (1939).
J. L. Fields and M. E. H. Ismail, “On the positivity of some 1F2’a,” SIAM J. Math. Anal. 6, 551–559 (1975).
R. Furrer, M. Genton, and D. Nychka, “Covariance tapering for interpolation of large spatial datasets,” J. Comput. Graph. Stat. 15, 502–523 (2006).
T. Gneiting, “Curiosities of characteristic functions,” Expo. Math. 19, 359–363 (2001).
T. Gneiting, “Compactly supported correlation functions,” J. Multivar. Anal. 83, 493–508 (2002).
G. Matheron, Les variables régionalisées et leur estimation (Masson, Paris, 1965).
D. Moak, “Completely monotonic functions of the form s-b(s2 +1)-a,” Rocky Mount. J. Math. 17, 719–725 (1987).
E. Porcu, ”Geostatica spazio-temporale: nuove classi di covarianza, variogramma e densit spettrali,” Doctoral Thesis (Univ. of Milano Bicocca,Milano, 2004).
E. Porcu and V. P. Zastavnyi, “Generalized Askey functions and their walks through dimensions,” Expo. Math. 32, 190–198 (2014).
B. Ramachandran, “Characteristic functions taking constant values on intervals of the real line,” Stat. Probab. Lett. 28, 269–270 (1996).
Z. Sasvari, Multivariate Characteristic and Correlation Functions (De Gruyter, Berlin, 2013).
R. Schaback and H. Wendland, “Kernel techniques: from machine learning to meshless methods,” Acta Numer. 15, 543–639 (2006).
R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions (De Gruyter, Berlin, Boston, 2010).
I. J. Schoenberg, “Metric spaces and completely monotone functions,” Ann. Math. 39, 811–841 (1938).
L. Shen, M. Ostoja-Starzewski, and E. Porcu, “Harmonic oscillator driven by random processes having fractal and Hurst effects,” Acta Mech. 226, 3653–3672 (2015).
M. L. Stein, Interpolation of Spatial Data. Some Theory of Kriging (Springer, New York, 1999).
R. M. Trigub, “Positive-definite compactly supported radial functions of polynomial form and maximal smoothness,” Mat. Fiz. Anal. Geom. 9, 394–400 (2002).
R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions (Kluwer, Springer, Boston, Dordrecht, London, 2004).
R. M. Trigub, “On the Fourier transform of function of two variables which depend only on the maximum of these variables,” arxiv:1512. 03183.
G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1944).
H. Wackernagel, Multivariate Geostatistics: An Introduction with Applications (Springer Science, New York, 2003).
H. Wendland, “Piecewise polinomial, positive definite and compactly supported radial functions of minimal degree,” Adv. Comp. Math. 4, 389–396 (1995).
D. V. Widder, The Laplace Transform (Princeton Univ. Press, Princeton, 1946).
Z. Wu, “Compactly supported positive definite radial functions,” Adv. Comput. Math. 4, 283–292 (1995).
V. P. Zastavnyi, “On positive definiteness of some functions,” J. Multivar. Anal. 73, 55–81 (2000).
V. P. Zastavnyi, “Positive-definite radial functions and splines,” Dokl. Math. 66, 213–216 (2002).
V. P. Zastavnyi and R. M. Trigub, “Positive-definite splines of a special form,” Sbornik: Math. 193, 1771–1800 (2002).
V. P. Zastavnyi, “On some properties of Buhmann functions,” Ukr. Math. J. 58, 1184–1208 (2006).
V. P. Zastavnyi, “On exponential type entire functions without zeros in the open lower half-plane,” Ukr. Math. Bull. 3, 395–422 (2006); arXiv:1606. 08255.
V. P. Zastavnyi, “Problems related to positive definite functions,” in Positive Definite Functions: from Schoenberg to Space-Time Challenges, Ed. by J. Mateu and E. Porcu (Editorial Univ. Jaume I, Castelló, Spain, 2008), pp. 63–114.
Author information
Authors and Affiliations
Corresponding author
Additional information
Submitted by F. G. Avkhadiev
Rights and permissions
About this article
Cite this article
Zastavnyi, V.P., Porcu, E. On positive definiteness of some radial functions. Lobachevskii J Math 38, 386–394 (2017). https://doi.org/10.1134/S1995080217020226
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995080217020226