Abstract
In this paper, we analyze the supercloseness property of the streamline diffusion finite element method (SDFEM) on Shishkin triangular meshes, which is different from one in the case of rectangular meshes. The analysis depends on integral inequalities for the parts related to the diffusion in the bilinear form. Moreover, our result allows the construction of a simple postprocessing that yields a more accurate solution. Finally, numerical experiments support these theoretical results.
Similar content being viewed by others
References
Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14(1), 1–137 (2005)
Chen, H., Lin, Q., Zhou, J., Wang, H.: Uniform error estimates for triangular finite element solutions of advection-diffusion equations. Adv Comput. Math. 38(1), 83–100 (2013)
Franz, S., Kellogg, R.B., Stynes, M.: Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities. Math. Comp. 81(278), 661–685 (2012)
Franz, S., Linß, T., Roos, H.-G.: Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers. Appl. Numer. Math. 58(12), 1818–1829 (2008)
Guo, W., Stynes, M.: Pointwise error estimates for a streamline diffusion scheme on a Shishkin mesh for a convection–diffusion problem. IMA J. Numer Anal. 17(1), 29–59 (1997)
Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, volume AMD 34, pp. 19–35. Amer. Soc. Mech. Engrs (ASME)., New York (1979)
Lin, Q., Yan, N., Zhou, A.: A Rectangle Test for Interpolated Finite Elements. In: Proceedings Systems Science and Engineering (Hong Kong, 1991), pp. 217–229. Great Wall Culture Publishing, Whittier, CA (1991)
Linß, T., Stynes, M.: Asymptotic analysis and Shishkin-type decomposition for an elliptic convection–diffusion problem. J. Math. Anal. Appl. 261(2), 604–632 (2001)
Linß, T., Stynes, M.: Numerical methods on Shishkin meshes for linear convection–diffusion problems. Comput. Methods Appl. Mech. Engrg. 190(28), 3527–3542 (2001)
Roos, H.-G.: Superconvergence on a hybrid mesh for singularly perturbed problems with exponential layers. ZAMM Z. Angew. Math. Mech. 86(8), 649–655 (2006)
Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations Volume 24 of Springer Series in Computational Mathematics, second. Springer, Berlin (2008)
Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)
Shishkin, G.I.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations (In Russian). Second doctoral thesis. Keldysh Institute, Moscow (1990)
Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)
Stynes, M., O’Riordan, E.: A uniformly convergent G,alerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal Appl. 214(1), 36–54 (1997)
Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003)
Stynes, M., Tobiska, L.: Using rectangular Q p elements in the SDFEM for a convection–diffusion problem with a boundary layer. Appl. Numer. Math. 58(12), 1789–1802 (2008)
Zarin, H., Roos, H.-G.: Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers. Numer. Math. 100(4), 735–759 (2005)
Zhang, J., Liu, X.: Analysis of the SDFEM in a modified streamline diffusion norm for singularly perturbed convection diffusion problems. arXiv:1603.02099 (2016)
Zhang, J., Mei, L., Chen, Y.: Pointwise estimates of the SDFEM for convection–diffusion problems with characteristic layers. Appl. Numer. Math. 64, 19–34 (2013)
Zhang, Z.: Finite element superconvergence on Shishkin mesh for 2-D convection–diffusion problems. Math. Comp. 72(243), 1147–1177 (2003)
Zhu, H., Zhang, Z.: Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer. Math. Comp. 83(286), 635–663 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Jinchao Xu
Rights and permissions
About this article
Cite this article
Zhang, J., Liu, X. Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. Adv Comput Math 43, 759–775 (2017). https://doi.org/10.1007/s10444-016-9505-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-016-9505-9
Keywords
- Exponential layer
- Streamline diffusion finite element method (SDFEM)
- Shishkin triangular mesh
- Supercloseness